Suppr超能文献

基于机械分级接触起电界面的人工机械感受器用于机器人自适应接收

Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception.

作者信息

Lei Hao, Cao Yixin, Sun Guoxuan, Huang Peihao, Xue Xiyin, Lu Bohan, Yan Jiawei, Wang Yuxi, Lim Eng Gee, Tu Xin, Liu Yina, Sun Xuhui, Zhao Chun, Wen Zhen

机构信息

Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693GJ, U.K.

出版信息

ACS Nano. 2025 Jan 14;19(1):1478-1489. doi: 10.1021/acsnano.4c14285. Epub 2024 Dec 22.

Abstract

Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human-machine interactions of robots. However, traditional contact-electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact-electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range. The presence of step regions within the mechanically graded microstructures helps contact-electrification interfaces resist fast compressive deformation and provides a large effective area. The highly sensitive linear region of TBAM with 1.18 V/kPa can be effectively extended to four times of that for the devices with traditional interfaces. In addition, the device is able to maintain a high sensitivity of 0.44 V/kPa even under a large pressure from 40 to 600 kPa. TBAM has been successfully used as an electronic skin to realize self-adaptive protection and grip strength perception for a commercial robot arm. Finally, a high angle resolution of 2° and an excellent linearity of 99.78% for joint bending detection were also achieved. With the aid of a convolutional neural network algorithm, a data glove based on TBAMs realizes a high accuracy rate of 95.5% for gesture recognition in a dark environment.

摘要

基于摩擦起电的人工机械感受器(TBAMs)能够将机械刺激直接转换为电信号,实现机器人的自适应保护和人机交互。然而,传统的接触起电界面在大压力下容易达到其变形极限,导致线性范围相对较窄。在这项工作中,我们制造了机械梯度微结构来调节接触起电界面的应变行为,同时赋予TBAMs高灵敏度和宽线性检测范围。机械梯度微结构中台阶区域的存在有助于接触起电界面抵抗快速压缩变形并提供大的有效面积。TBAM的高灵敏度线性区域(1.18 V/kPa)可以有效地扩展到具有传统界面的器件的四倍。此外,即使在40至600 kPa的大压力下,该器件仍能保持0.44 V/kPa的高灵敏度。TBAM已成功用作电子皮肤,实现了商用机器人手臂的自适应保护和握力感知。最后,在关节弯曲检测中还实现了2°的高角度分辨率和99.78%的出色线性度。借助卷积神经网络算法,基于TBAMs的数据手套在黑暗环境中的手势识别准确率高达95.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验