Suppr超能文献

基于CT的身体组成和衰弱状况作为胃肠道恶性肿瘤老年患者生存的预测因素

CT-Based Body Composition and Frailty as Predictors of Survival Among Older Adults With Gastrointestinal Malignancies.

作者信息

Giri Smith, Harmon Christian, Hess Daniel, Cespedes Feliciano Elizabeth M, Fumagalli Ijeamaka Anyene, Caan Bette, Lenchik Leon, Popuri Karteek, Chow Vincent, Beg Mirza Faisal, Bhatia Smita, Williams Grant R

机构信息

Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13664. doi: 10.1002/jcsm.13664. Epub 2024 Dec 23.

Abstract

BACKGROUND

Older adults with cancer are at an increased risk of treatment related toxicities and early death. Routinely collected clinico-demographic characteristics inadequately explain this increased risk limiting accurate prognostication. Prior studies have suggested that altered body composition and frailty are independently associated with worse survival among older adults with cancer; however, their combined influence remains unclear.

METHODS

We used data from a single-institution prospective cohort study of older adults (≥ 60 years) who underwent geriatric assessment (GA) at the time of initial consultation with a medical oncologist from September 2017 to December 2020 and available baseline abdominal computed tomography within 60 days of GA. Using multi-slice CT images from T12 to L5 level, we assessed volumetric measures of skeletal muscle (SMV), visceral adipose tissue (VATV), subcutaneous adipose tissue (SATV) and averaged skeletal muscle density (SMD), computing sex-specific z for each measure. Frailty was measured using a 44-item frailty index using the deficit accumulation approach. Primary outcome of interest was overall survival (OS) defined as time from GA to death or last follow up. We used multivariable Cox regression model to study the independent association between the above four body composition measurements and OS adjusted for baseline confounders and frailty.

RESULTS

We included 459 patients with a mean age of 69.7 ± 7.5 years, 60% males and 77% non-Hispanic Whites. Most had colorectal (27%) or pancreatic cancer (20%) and 48% had stage IV disease. Over a median follow up of 39.4 months, 209 patients (46%) died. In multivariable Cox regression models adjusted for age, sex, race, cancer type, cancer stage and frailty, skeletal muscle volume (HR 0.74; 95% CI 0.58-0.96; p = 0.02, per 1 SD increment) was independently associated with OS. The addition of body composition variables to baseline clinico-demographic variables and frailty led to a slightly improved model discrimination.

CONCLUSIONS

SMV is independently associated with OS among older adults with newly diagnosed gastrointestinal cancers. Capturing body composition measurements in oncology practice may provide additional prognostic information for older adults with cancer above and beyond what is captured in routine clinical assessment including frailty.

摘要

背景

老年癌症患者发生治疗相关毒性反应及早期死亡的风险增加。常规收集的临床人口统计学特征不足以解释这种风险增加的情况,限制了准确的预后判断。既往研究表明,身体成分改变和虚弱与老年癌症患者较差的生存率独立相关;然而,它们的综合影响仍不明确。

方法

我们使用了一项单机构前瞻性队列研究的数据,该研究对象为2017年9月至2020年12月初次咨询医学肿瘤学家时接受老年评估(GA)且在GA后60天内有可用基线腹部计算机断层扫描的≥60岁老年人。利用从T12到L5水平的多层CT图像,我们评估了骨骼肌体积(SMV)、内脏脂肪组织(VATV)、皮下脂肪组织(SATV)的容积测量值以及平均骨骼肌密度(SMD),并计算每个测量值的性别特异性z值。使用缺陷积累法,通过一个44项的虚弱指数来测量虚弱程度。感兴趣的主要结局是总生存期(OS),定义为从GA到死亡或最后一次随访的时间。我们使用多变量Cox回归模型来研究上述四种身体成分测量值与经基线混杂因素和虚弱调整后的OS之间的独立关联。

结果

我们纳入了459例患者,平均年龄为69.7±7.5岁,60%为男性,77%为非西班牙裔白人。大多数患者患有结直肠癌(27%)或胰腺癌(20%),48%为IV期疾病。在中位随访39.4个月期间,209例患者(46%)死亡。在调整了年龄、性别、种族、癌症类型、癌症分期和虚弱程度的多变量Cox回归模型中,骨骼肌体积(风险比0.74;95%置信区间0.58 - 0.96;p = 0.02,每增加1个标准差)与总生存期独立相关。将身体成分变量添加到基线临床人口统计学变量和虚弱程度中,可使模型判别略有改善。

结论

在新诊断的老年胃肠道癌症患者中,SMV与总生存期独立相关。在肿瘤学实践中获取身体成分测量值可能为老年癌症患者提供超出包括虚弱程度在内的常规临床评估所获取信息的额外预后信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a0/11744297/81be33fb0bb9/JCSM-16-e13664-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验