文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning.

作者信息

Alizadeh Meysam, Kubli Maël, Samei Zeynab, Dehghani Shirin, Zahedivafa Mohammadmasiha, Bermeo Juan D, Korobeynikova Maria, Gilardi Fabrizio

机构信息

Department of Political Science, University of Zurich, 8050 Zurich, Switzerland.

Department of Computer Science, Institute for Fundamental Research, Tehran, Iran.

出版信息

J Comput Soc Sci. 2025;8(1):17. doi: 10.1007/s42001-024-00345-9. Epub 2024 Dec 18.


DOI:10.1007/s42001-024-00345-9
PMID:39712076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11655591/
Abstract

UNLABELLED: This paper studies the performance of open-source Large Language Models (LLMs) in text classification tasks typical for political science research. By examining tasks like stance, topic, and relevance classification, we aim to guide scholars in making informed decisions about their use of LLMs for text analysis and to establish a baseline performance benchmark that demonstrates the models' effectiveness. Specifically, we conduct an assessment of both zero-shot and fine-tuned LLMs across a range of text annotation tasks using news articles and tweets datasets. Our analysis shows that fine-tuning improves the performance of open-source LLMs, allowing them to match or even surpass zero-shot GPT 3.5 and GPT-4, though still lagging behind fine-tuned GPT 3.5. We further establish that fine-tuning is preferable to few-shot training with a relatively modest quantity of annotated text. Our findings show that fine-tuned open-source LLMs can be effectively deployed in a broad spectrum of text annotation applications. We provide a Python notebook facilitating the application of LLMs in text annotation for other researchers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42001-024-00345-9.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/1f88c0b739a3/42001_2024_345_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/d643c6d935df/42001_2024_345_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/2601c3b391ee/42001_2024_345_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/4c76357ea757/42001_2024_345_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/544889adad7a/42001_2024_345_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/1f88c0b739a3/42001_2024_345_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/d643c6d935df/42001_2024_345_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/2601c3b391ee/42001_2024_345_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/4c76357ea757/42001_2024_345_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/544889adad7a/42001_2024_345_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718a/11655591/1f88c0b739a3/42001_2024_345_Fig5_HTML.jpg

相似文献

[1]
Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning.

J Comput Soc Sci. 2025

[2]
Privacy-ensuring Open-weights Large Language Models Are Competitive with Closed-weights GPT-4o in Extracting Chest Radiography Findings from Free-Text Reports.

Radiology. 2025-1

[3]
Me-LLaMA: Medical Foundation Large Language Models for Comprehensive Text Analysis and Beyond.

Res Sq. 2024-12-18

[4]
Performance and Reproducibility of Large Language Models in Named Entity Recognition: Considerations for the Use in Controlled Environments.

Drug Saf. 2025-3

[5]
The unreasonable effectiveness of large language models in zero-shot semantic annotation of legal texts.

Front Artif Intell. 2023-11-17

[6]
A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.

Comput Biol Med. 2024-3

[7]
Closing the gap between open-source and commercial large language models for medical evidence summarization.

ArXiv. 2024-7-25

[8]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[9]
Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data.

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024-3

[10]
Comparative Analysis of Large Language Models in Chinese Medical Named Entity Recognition.

Bioengineering (Basel). 2024-9-29

引用本文的文献

[1]
New opportunities and challenges for conservation evidence synthesis from advances in natural language processing.

Conserv Biol. 2025-4

[2]
Developing a named entity framework for thyroid cancer staging and risk level classification using large language models.

NPJ Digit Med. 2025-3-1

本文引用的文献

[1]
Annotated dataset creation through large language models for non-english medical NLP.

J Biomed Inform. 2023-9

[2]
Tokenization of social media engagements increases the sharing of false (and other) news but penalization moderates it.

Sci Rep. 2023-8-22

[3]
ChatGPT outperforms crowd workers for text-annotation tasks.

Proc Natl Acad Sci U S A. 2023-7-25

[4]
Why open-source generative AI models are an ethical way forward for science.

Nature. 2023-4

[5]
ChatGPT: five priorities for research.

Nature. 2023-2

[6]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索