Suppr超能文献

动态二元环境中的自适应学习率:自适应信息处理的特征

Adaptive learning rate in dynamical binary environments: the signature of adaptive information processing.

作者信息

Zhu Changbo, Zhou Ke, Tang Yandong, Tang Fengzhen, Si Bailu

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016 Liaoning China.

University of Chinese Academy of Sciences, Beijing, 100049 China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):4009-4031. doi: 10.1007/s11571-024-10128-7. Epub 2024 Oct 21.

Abstract

Adaptive mechanisms of learning models play critical roles in interpreting adaptive behavior of humans and animals. Different learning models, varying from Bayesian models, deep learning or regression models to reward-based reinforcement learning models, adopt similar update rules. These update rules can be reduced to the same generalized mathematical form: the Rescorla-Wagner equation. In this paper, we construct a hierarchical Bayesian model with an adaptive learning rate for inferring a hidden probability in a dynamical binary environment, and analysis the adaptive behavior of the model on synthetic data. The update rule of the model state turns out to be an extension of the Rescorla-Wagner equation. The adaptive learning rate is modulated by beliefs and environment uncertainty. Our results underscore adaptive learning rate as mechanistic component in efficient and accurate inference, as well as the signature of information processing in adaptive machine learning models.

摘要

学习模型的自适应机制在解释人类和动物的适应性行为方面起着关键作用。不同的学习模型,从贝叶斯模型、深度学习或回归模型到基于奖励的强化学习模型,都采用类似的更新规则。这些更新规则可以简化为相同的广义数学形式:雷斯克拉-瓦格纳方程。在本文中,我们构建了一个具有自适应学习率的分层贝叶斯模型,用于推断动态二元环境中的隐藏概率,并分析该模型在合成数据上的自适应行为。结果表明,模型状态的更新规则是雷斯克拉-瓦格纳方程的一种扩展。自适应学习率由信念和环境不确定性调节。我们的结果强调了自适应学习率作为高效准确推理中的机制组成部分,以及自适应机器学习模型中信息处理的特征。

相似文献

1
Adaptive learning rate in dynamical binary environments: the signature of adaptive information processing.
Cogn Neurodyn. 2024 Dec;18(6):4009-4031. doi: 10.1007/s11571-024-10128-7. Epub 2024 Oct 21.
2
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
7
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.
8
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
9
Atypical antipsychotics for disruptive behaviour disorders in children and youths.
Cochrane Database Syst Rev. 2017 Aug 9;8(8):CD008559. doi: 10.1002/14651858.CD008559.pub3.

本文引用的文献

1
The Rescorla-Wagner model, prediction error, and fear learning.
Neurobiol Learn Mem. 2023 Sep;203:107799. doi: 10.1016/j.nlm.2023.107799. Epub 2023 Jul 11.
2
Statistically Optimal Cue Integration During Human Spatial Navigation.
Psychon Bull Rev. 2023 Oct;30(5):1621-1642. doi: 10.3758/s13423-023-02254-w. Epub 2023 Apr 10.
3
Influence of Recent Trial History on Interval Timing.
Neurosci Bull. 2023 Apr;39(4):559-575. doi: 10.1007/s12264-022-00954-2. Epub 2022 Oct 8.
4
Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements.
Cogn Neurodyn. 2021 Aug;15(4):547-568. doi: 10.1007/s11571-020-09661-y. Epub 2021 Jan 25.
5
Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish.
Curr Opin Neurobiol. 2020 Oct;64:151-160. doi: 10.1016/j.conb.2020.08.013. Epub 2020 Oct 19.
6
A brain network supporting social influences in human decision-making.
Sci Adv. 2020 Aug 19;6(34):eabb4159. doi: 10.1126/sciadv.abb4159. eCollection 2020 Aug.
7
Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices.
Soc Cogn Affect Neurosci. 2020 Jul 30;15(6):695-707. doi: 10.1093/scan/nsaa089.
8
NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation.
Neural Netw. 2020 Jun;126:21-35. doi: 10.1016/j.neunet.2020.02.023. Epub 2020 Mar 4.
9
Human visual exploration reduces uncertainty about the sensed world.
PLoS One. 2018 Jan 5;13(1):e0190429. doi: 10.1371/journal.pone.0190429. eCollection 2018.
10
A causal account of the brain network computations underlying strategic social behavior.
Nat Neurosci. 2017 Aug;20(8):1142-1149. doi: 10.1038/nn.4602. Epub 2017 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验