Rahimi Saryazdi Ali, Ghassemi Farnaz, Tabanfar Zahra, Ansarinasab Sheida, Nazarimehr Fahimeh, Jafari Sajad
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Cogn Neurodyn. 2024 Dec;18(6):3929-3949. doi: 10.1007/s11571-024-10163-4. Epub 2024 Sep 13.
Deception detection is a critical aspect across various domains. Integrating advanced signal processing techniques, particularly in neuroscientific studies, has opened new avenues for exploring deception at a deeper level. This study uses electroencephalogram (EEG) signals from a balanced cohort of 22 participants, consisting of both males and females, aged between 22 and 29, engaged in a visual task for instructed deception. We propose a novel approach in the realm of deception detection utilizing the Weighted Dual Perspective Visibility Graph (WDPVG) method to decode instructed deception by converting average epochs from each EEG channel into a complex network. Six graph-based features, including average and deviation of strength, weighted clustering coefficient, weighted clustering coefficient entropy, average weighted shortest path length, and modularity, are extracted, comprehensively representing the underlying brain dynamics associated with deception. Subsequently, these features are employed for classification using three distinct algorithms: K Nearest Neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT). Experimental results reveal promising accuracy rates for KNN (66.64%), SVM (86.25%), and DT (82.46%). Furthermore, the features distributions of EEG networks are analyzed across different brain lobes, comparing truth-telling and lying modes. These analyses reveal the frontal and parietal lobes' potential in distinguishing between truth and deception, highlighting their active role during deceptive behavior. The findings demonstrate the WDPVG method's effectiveness in decoding deception from EEG signals, offering insights into the neural basis of deceptive behavior. This research could enhance the understanding of neuroscience and deception detection, providing a framework for future real-world applications.
欺骗检测是各个领域的一个关键方面。整合先进的信号处理技术,特别是在神经科学研究中,为更深入地探索欺骗开辟了新途径。本研究使用了来自22名年龄在22至29岁之间的男女均衡队列参与者的脑电图(EEG)信号,他们参与了一项用于指示性欺骗的视觉任务。我们在欺骗检测领域提出了一种新颖的方法,利用加权双视角可见性图(WDPVG)方法,通过将每个EEG通道的平均时段转换为复杂网络来解码指示性欺骗。提取了六个基于图的特征,包括强度的平均值和偏差、加权聚类系数、加权聚类系数熵、平均加权最短路径长度和模块化,全面代表了与欺骗相关的潜在大脑动态。随后,使用三种不同的算法:K近邻(KNN)、支持向量机(SVM)和决策树(DT)将这些特征用于分类。实验结果显示,KNN的准确率为66.64%,SVM为86.25%,DT为82.46%,效果良好。此外,还分析了不同脑叶的EEG网络特征分布,比较了说实话和说谎模式。这些分析揭示了额叶和顶叶在区分真假方面的潜力,突出了它们在欺骗行为中的积极作用。研究结果证明了WDPVG方法在从EEG信号中解码欺骗方面的有效性,为欺骗行为的神经基础提供了见解。这项研究可以增进对神经科学和欺骗检测的理解,为未来的实际应用提供一个框架。