Yuno Takeo, Nakade Yusuke, Nakada Mitsutoshi, Kinoshita Masashi, Nakata Masako, Nakagawa Shiori, Oe Hiroyasu, Mori Mika, Wada Takashi, Kanamori Hajime
Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN.
Department of Neurosurgery, Kanazawa University, Kanazawa, JPN.
Cureus. 2024 Nov 21;16(11):e74155. doi: 10.7759/cureus.74155. eCollection 2024 Nov.
Background Motor evoked potential (MEP) monitoring is a commonly employed method in neurosurgery to prevent postoperative motor dysfunction. However, it has low prediction accuracy for postoperative paralysis. This study aimed to develop a decision tree (DT) model for predicting postoperative motor function using MEP monitoring data. Methodology In this retrospective cohort study, we used datasets, comprising 14 variables including MEP amplitudes, obtained from 125 patients who underwent brain tumor resection with intraoperative MEP monitoring at our hospital. Prediction models were developed using DT and receiver operating characteristic (ROC) curve analyses. Model performance was assessed for accuracy, sensitivity, specificity, kappa () coefficient, and area under the ROC curve (AUC) for internal and external validation. For the external validation of the classification model, we retrospectively collected data from an additional 28 patients who underwent brain tumor surgery with MEP monitoring. Results The amplitude of the last measured MEP and amplitude ratio were independent predictors of outcomes. The DT model achieved an accuracy of 0.921, sensitivity of 0.917, specificity of 0.923, and AUC of 0.931 using the internal test. In comparison, the ROC curve based on the amplitude of the last measured MEP achieved a sensitivity of 0.875, specificity of 0.906, and AUC of 0.941. External validation was performed and the DT model was superior to prediction by cutoff values from ROC curves in terms of accuracy, sensitivity, specificity, and coefficient. Conclusions Our study suggested the usefulness of DT modeling for predicting postoperative paralysis. However, this study has several limitations, such as the retrospective design and small sample size of the validation dataset. Nonetheless, the DT modeling presented in this study might be applicable to surgeries using MEP monitoring and is expected to contribute to devising treatment strategies by predicting postoperative motor function in various patients.
背景 运动诱发电位(MEP)监测是神经外科手术中预防术后运动功能障碍常用的方法。然而,其对术后瘫痪的预测准确性较低。本研究旨在利用MEP监测数据开发一种决策树(DT)模型,用于预测术后运动功能。方法 在这项回顾性队列研究中,我们使用了包含14个变量(包括MEP波幅)的数据集,这些数据来自于我院125例术中进行MEP监测的脑肿瘤切除术患者。使用DT和受试者工作特征(ROC)曲线分析来开发预测模型。通过内部和外部验证,对模型的准确性、敏感性、特异性、kappa(κ)系数以及ROC曲线下面积(AUC)进行模型性能评估。为了对分类模型进行外部验证,我们回顾性收集了另外28例接受MEP监测的脑肿瘤手术患者的数据。结果 最后一次测量的MEP波幅和波幅比值是结果的独立预测因素。使用内部测试时,DT模型的准确率为0.921,敏感性为0.917,特异性为0.923,AUC为0.931。相比之下,基于最后一次测量的MEP波幅的ROC曲线的敏感性为0.875,特异性为0.906,AUC为0.941。进行了外部验证,DT模型在准确性、敏感性、特异性和κ系数方面优于基于ROC曲线临界值的预测。结论 我们的研究表明DT建模在预测术后瘫痪方面是有用的。然而,本研究存在一些局限性,如回顾性设计和验证数据集样本量较小。尽管如此,本研究中提出的DT建模可能适用于使用MEP监测的手术,并有望通过预测不同患者的术后运动功能为制定治疗策略做出贡献。