Suppr超能文献

紧跟迅速多样化的制药格局。

Keeping up with a Quickly Diversifying Pharmaceutical Landscape.

作者信息

Goyon Alexandre

机构信息

Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States.

出版信息

ACS Meas Sci Au. 2024 Sep 24;4(6):615-619. doi: 10.1021/acsmeasuresciau.4c00050. eCollection 2024 Dec 18.

Abstract

Small molecules and antibodies have dominated the pharmaceutical landscape for decades. However, limitations associated with therapeutic targets deemed "undruggable" and progress in biology and chemistry have led to the blossoming of drug modalities and therapeutic approaches. In 2023, a high number of 9 oligonucleotide and peptide products were approved by the Food and Drug Administration (FDA), accounting for 16% of all drugs approved. Additionally, for the first time, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene therapy product was approved for the treatment of sickle cell disease. New drug modalities possess a wide range of physicochemical properties and structures, which complicates their analytical characterization. Impurities are formed at each step of the oligonucleotide and peptide solid phase synthesis and during shelf life. Longer chain lengths lead to a higher number of closely related impurities that become increasingly more difficult to separate from the full-length product. Chemical modifications such as phosphorothioates (PS) result in the presence of diastereomers, which often require orthogonal methods for their profiling and strategies to prevent their interference with the separation of achiral impurities. In-vitro produced mRNA and plasmid DNA also present a variety of quality attributes that need to be determined, such as the polyA tail length or capping efficiency. Analytical challenges arise from the variety of drug modality physiochemical properties and attributes, fast turnaround times, and heightened level of characterization needed to enable data-driven decisions early in the drug development process. This perspective provides the author's views on the lessons learned and strategies employed in recent years.

摘要

几十年来,小分子和抗体一直主导着制药领域。然而,与被认为“不可成药”的治疗靶点相关的局限性以及生物学和化学领域的进展,导致了药物形式和治疗方法的蓬勃发展。2023年,美国食品药品监督管理局(FDA)批准了大量(9种)寡核苷酸和肽产品,占所有获批药物的16%。此外,一种成簇规律间隔短回文重复序列(CRISPR)-Cas9基因治疗产品首次获批用于治疗镰状细胞病。新的药物形式具有广泛的物理化学性质和结构,这使得它们的分析表征变得复杂。在寡核苷酸和肽固相合成的每个步骤以及保质期内都会形成杂质。链长越长,紧密相关的杂质数量就越多,这些杂质越来越难以与全长产物分离。诸如硫代磷酸酯(PS)之类的化学修饰会导致非对映异构体的存在,这通常需要采用正交方法对其进行分析,并采取策略防止它们干扰非手性杂质的分离。体外生产的mRNA和质粒DNA也呈现出需要确定的各种质量属性,例如聚腺苷酸尾长度或加帽效率。分析挑战源于药物形式的各种物理化学性质和属性、快速周转时间以及在药物开发过程早期做出数据驱动决策所需的更高水平的表征。本文作者将分享近年来所吸取的经验教训及采用的策略。

相似文献

1
Keeping up with a Quickly Diversifying Pharmaceutical Landscape.
ACS Meas Sci Au. 2024 Sep 24;4(6):615-619. doi: 10.1021/acsmeasuresciau.4c00050. eCollection 2024 Dec 18.
2
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
5
Delivering CRISPR: a review of the challenges and approaches.
Drug Deliv. 2018 Nov;25(1):1234-1257. doi: 10.1080/10717544.2018.1474964.
6
Dietary glycation compounds - implications for human health.
Crit Rev Toxicol. 2024 Sep;54(8):485-617. doi: 10.1080/10408444.2024.2362985. Epub 2024 Aug 16.
7
Analytical advances in pharmaceutical impurity profiling.
Eur J Pharm Sci. 2016 May 25;87:118-35. doi: 10.1016/j.ejps.2015.12.007. Epub 2015 Dec 9.
9
Related impurities in peptide medicines.
J Pharm Biomed Anal. 2014 Dec;101:2-30. doi: 10.1016/j.jpba.2014.06.012. Epub 2014 Jun 13.
10
CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
Chem Rev. 2017 Aug 9;117(15):9874-9906. doi: 10.1021/acs.chemrev.6b00799. Epub 2017 Jun 22.

本文引用的文献

2
Optimizing Messenger RNA Analysis Using Ultra-Wide Pore Size Exclusion Chromatography Columns.
Int J Mol Sci. 2024 Jun 6;25(11):6254. doi: 10.3390/ijms25116254.
3
Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography.
Anal Chem. 2024 Jun 18;96(24):9994-10002. doi: 10.1021/acs.analchem.4c01384. Epub 2024 Jun 10.
4
Online Nucleotide Mapping of mRNAs.
Anal Chem. 2024 May 28;96(21):8674-8681. doi: 10.1021/acs.analchem.4c00873. Epub 2024 May 7.
5
Analysis of RNA and Its Modifications.
Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):47-68. doi: 10.1146/annurev-anchem-061622-125954. Epub 2024 Jul 2.
7
Assessment of pDNA isoforms using microfluidic electrophoresis.
Electrophoresis. 2024 Sep;45(17-18):1525-1534. doi: 10.1002/elps.202300293. Epub 2024 Apr 3.
10
Evaluation of size-exclusion chromatography, multi-angle light scattering detection and mass photometry for the characterization of mRNA.
J Chromatogr A. 2024 Mar 29;1719:464756. doi: 10.1016/j.chroma.2024.464756. Epub 2024 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验