Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States.
Department of Bioengineering, Stanford University, Stanford, California 94305, United States.
Anal Chem. 2024 Apr 16;96(15):5860-5868. doi: 10.1021/acs.analchem.3c05747. Epub 2024 Apr 3.
Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving the desired rheological behavior as well as tunable and payload release kinetics. However, quantitation of hydrogel composition is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG--PLA nanoparticles, and a therapeutic compound, bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (, proteins) and was suitable for composition analysis as well as for evaluating release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with (1) a multi-angle light scattering detector (RPLC-MALS) or (2) high resolution mass spectrometry (RPLC-MS) and a Fourier-transform based deconvolution algorithm. We envision that this analytical strategy could be generalized to characterize critical quality attributes of other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.
通过聚合物-纳米粒子相互作用形成的超分子水凝胶是一种有前途的可用于转化医学的生物相容材料。这类水凝胶表现出剪切稀化行为和机械性能的快速恢复,为配制可喷涂和可注射的治疗药物提供了理想的特性。水凝胶组成的表征和封装药物的载药量对于实现所需的流变行为以及可调节和载药释放动力学至关重要。然而,由于材料的复杂性、异质性、高分子量以及缺乏生色团,定量测定水凝胶的组成具有挑战性。在这里,我们提出了一种无标记的方法,通过将反相液相色谱法与带电气溶胶检测器(RPLC-CAD)相结合,同时确定水凝胶的聚合成分和封装的有效载荷。所研究的水凝胶由改性羟丙基甲基纤维素、自组装的 PEG-PLA 纳米粒子和一种治疗化合物比马前列素组成。使用 C4 固定相的 RPLC-CAD 方法可以分离和定量测定这三种成分。该方法表现出稳健的性能,适用于替代有效载荷(如蛋白质),并且适用于组成分析以及评估有效载荷从水凝胶中的释放。此外,该方法可用于监测聚合物降解和材料稳定性,通过将 RPLC 方法与(1)多角度光散射检测器(RPLC-MALS)或(2)高分辨率质谱(RPLC-MS)和基于傅里叶变换的解卷积算法相结合,可进一步阐明这些特性。我们设想这种分析策略可以推广到表征其他类型的超分子水凝胶的关键质量属性,建立结构-性质关系,并为水凝胶药物产品开发提供合理的设计指导。