Suppr超能文献

HIPPO人工智能:发育性髋关节发育不良中自动放射学股骨髋臼测量与患者报告结局的相关性

HIPPO artificial intelligence: Correlating automated radiographic femoroacetabular measurements with patient-reported outcomes in developmental hip dysplasia.

作者信息

Alshaikhsalama Ahmed, Archer Holden, Xi Yin, Ljuhar Richard, Wells Joel E, Chhabra Avneesh

机构信息

Department of Radiology, University of Texas Southwestern, Dallas, TX 75390, United States.

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States.

出版信息

World J Exp Med. 2024 Dec 20;14(4):99359. doi: 10.5493/wjem.v14.i4.99359.

Abstract

BACKGROUND

Hip dysplasia (HD) is characterized by insufficient acetabular coverage of the femoral head, leading to a predisposition for osteoarthritis. While radiographic measurements such as the lateral center edge angle (LCEA) and Tönnis angle are essential in evaluating HD severity, patient-reported outcome measures (PROMs) offer insights into the subjective health impact on patients.

AIM

To investigate the correlations between machine-learning automated and manual radiographic measurements of HD and PROMs with the hypothesis that artificial intelligence (AI)-generated HD measurements indicating less severe dysplasia correlate with better PROMs.

METHODS

Retrospective study evaluating 256 hips from 130 HD patients from a hip preservation clinic database. Manual and AI-derived radiographic measurements were collected and PROMs such as the Harris hip score (HHS), international hip outcome tool (iHOT-12), short form (SF) 12 (SF-12), and Visual Analogue Scale of the European Quality of Life Group survey were correlated using Spearman's rank-order correlation.

RESULTS

The median patient age was 28.6 years (range 15.7-62.3 years) with 82.3% of patients being women and 17.7% being men. The median interpretation time for manual readers and AI ranged between 4-12 minutes per patient and 31 seconds, respectively. Manual measurements exhibited weak correlations with HHS, including LCEA ( = 0.18) and Tönnis angle ( = -0.24). AI-derived metrics showed similar weak correlations, with the most significant being Caput-Collum-Diaphyseal (CCD) with iHOT-12 at = -0.25 ( = 0.042) and CCD with SF-12 at = 0.25 ( = 0.048). Other measured correlations were not significant ( > 0.05).

CONCLUSION

This study suggests AI can aid in HD assessment, but weak PROM correlations highlight their continued importance in predicting subjective health and outcomes, complementing AI-derived measurements in HD management.

摘要

背景

髋关节发育不良(HD)的特征是髋臼对股骨头的覆盖不足,易导致骨关节炎。虽然诸如外侧中心边缘角(LCEA)和托尼斯角等影像学测量对于评估HD的严重程度至关重要,但患者报告结局测量(PROMs)能深入了解HD对患者主观健康的影响。

目的

研究HD的机器学习自动和手动影像学测量与PROMs之间的相关性,假设人工智能(AI)生成的显示发育不良较轻的HD测量结果与更好的PROMs相关。

方法

回顾性研究,评估来自髋关节保留诊所数据库的130例HD患者的256个髋关节。收集手动和AI得出的影像学测量结果,并使用斯皮尔曼等级相关分析将诸如Harris髋关节评分(HHS)、国际髋关节结局工具(iHOT - 12)、简短形式(SF)12(SF - 12)以及欧洲生活质量小组调查的视觉模拟量表等PROMs进行相关性分析。

结果

患者年龄中位数为28.6岁(范围15.7 - 62.3岁),其中82.3%为女性,17.7%为男性。手动阅片者和AI对每位患者的中位数解读时间分别为4 - 12分钟和31秒。手动测量与HHS的相关性较弱,包括LCEA( = 0.18)和托尼斯角( = - 0.24)。AI得出的指标显示出类似的弱相关性,最显著的是头 - 颈 - 骨干(CCD)与iHOT - 12的相关性为 = - 0.25( = 0.042),以及CCD与SF - 12的相关性为 = 0.25( = 0.048)。其他测量的相关性不显著( > 0.05)。

结论

本研究表明AI有助于HD评估,但PROMs的弱相关性凸显了它们在预测主观健康和结局方面的持续重要性,在HD管理中可补充AI得出的测量结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03af/11551701/776142d5d230/99359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验