Suppr超能文献

一种基于临床和计算机断层扫描(CT)指标的新型模型,用于预测接受胰十二指肠切除术患者术后主要并发症的危险因素。

A novel model based on clinical and computed tomography (CT) indices to predict the risk factors of postoperative major complications in patients undergoing pancreaticoduodenectomy.

作者信息

Wang Jiaqi, Xu Kangjing, Zhou Changsheng, Wang Xinbo, Zuo Junbo, Zeng Chenghao, Zhou Pinwen, Gao Xuejin, Zhang Li, Wang Xinying

机构信息

Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

出版信息

PeerJ. 2024 Dec 19;12:e18753. doi: 10.7717/peerj.18753. eCollection 2024.

Abstract

BACKGROUND

Postoperative complications are prone to occur in patients after radical pancreaticoduodenectomy (PD). This study aimed to construct and validate a model for predicting postoperative major complications in patients after PD.

METHODS

The clinical data of 360 patients who underwent PD were retrospectively collected from two centers between January 2019 and December 2023. Visceral adipose volume (VAV) and subcutaneous adipose volume (SAV) were measured using three-dimensional (3D) computed tomography (CT) reconstruction. According to the Clavien-Dindo classification system, the postoperative complications were graded. Subsequently, a predictive model was constructed based on the results of least absolute shrinkage and selection operator (LASSO) multivariate logistic regression analysis and stepwise (stepAIC) selection. The nomogram was internally validated by the training and test cohort. The discriminatory ability and clinical utility of the nomogram were evaluated by area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA).

RESULTS

The major complications occurred in 13.3% ( = 48) of patients after PD. The nomogram revealed that high VAV/SAV, high system inflammation response index (SIRI), high triglyceride glucose-body mass index (TyG-BMI), low prognostic nutritional index (PNI) and CA199 ≥ 37 were independent risk factors for major complications. The C-index of this model was 0.854 (95%CI [0.800-0.907]), showing excellent discrimination. The calibration curve demonstrated satisfactory concordance between nomogram predictions and actual observations. The DCA curve indicated the substantial clinical utility of the nomogram.

CONCLUSION

The model based on clinical and CT indices demonstrates good predictive performance and clinical benefit for major complications in patients undergoing PD.

摘要

背景

根治性胰十二指肠切除术(PD)后患者容易发生术后并发症。本研究旨在构建并验证一个预测PD术后患者主要并发症的模型。

方法

回顾性收集2019年1月至2023年12月期间在两个中心接受PD的360例患者的临床资料。使用三维(3D)计算机断层扫描(CT)重建测量内脏脂肪体积(VAV)和皮下脂肪体积(SAV)。根据Clavien-Dindo分类系统对术后并发症进行分级。随后,基于最小绝对收缩和选择算子(LASSO)多因素逻辑回归分析和逐步(stepAIC)选择的结果构建预测模型。通过训练和测试队列对列线图进行内部验证。通过受试者工作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估列线图的辨别能力和临床实用性。

结果

PD术后13.3%(n = 48)的患者发生了主要并发症。列线图显示,高VAV/SAV、高全身炎症反应指数(SIRI)、高甘油三酯血糖体质指数(TyG-BMI)、低预后营养指数(PNI)和CA199≥37是主要并发症的独立危险因素。该模型的C指数为0.854(95%CI[0.800 - 0.907]),显示出优异的辨别能力。校准曲线显示列线图预测与实际观察结果之间具有令人满意的一致性。DCA曲线表明列线图具有显著的临床实用性。

结论

基于临床和CT指标的模型对接受PD的患者主要并发症具有良好的预测性能和临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b2b/11663404/e7fd22c3f2bd/peerj-12-18753-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验