Suppr超能文献

CAFE:用于光谱流式细胞术高维分析与可视化的集成网络应用程序。

CAFE: An Integrated Web App for High-Dimensional Analysis and Visualization in Spectral Flow Cytometry.

作者信息

Siam Md Hasanul Banna, Ali Md Akkas, Vardaman Donald, Acharyya Satwik, Patil Mallikarjun, Tyrrell Daniel J

机构信息

Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205 USA.

Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35233 USA.

出版信息

bioRxiv. 2024 Dec 10:2024.12.03.626714. doi: 10.1101/2024.12.03.626714.

Abstract

Spectral flow cytometry provides greater insights into cellular heterogeneity by simultaneous measurement of up to 50 markers. However, analyzing such high-dimensional (HD) data is complex through traditional manual gating strategy. To address this gap, we developed CAFE as an open-source Python-based web application with a graphical user interface. Built with Streamlit, CAFE incorporates libraries such as Scanpy for single-cell analysis, Pandas and PyArrow for efficient data handling, and Matplotlib, Seaborn, Plotly for creating customizable figures. Its robust toolset includes density-based down-sampling, dimensionality reduction, batch correction, Leiden-based clustering, cluster merging and annotation. Using CAFE, we demonstrated analysis of a human PBMC dataset of 350,000 cells identifying 16 distinct cell clusters. CAFE can generate publication-ready figures in real time via interactive slider controls and dropdown menus, eliminating the need for coding expertise and making HD data analysis accessible to all. CAFE is licensed under MIT and is freely available at https://github.com/mhbsiam/cafe.

摘要

光谱流式细胞术通过同时测量多达50个标志物,能更深入地了解细胞异质性。然而,通过传统的手动设门策略分析此类高维(HD)数据很复杂。为了弥补这一差距,我们开发了CAFE,这是一个基于Python的开源网络应用程序,带有图形用户界面。CAFE基于Streamlit构建,整合了诸如用于单细胞分析的Scanpy、用于高效数据处理的Pandas和PyArrow,以及用于创建可定制图形的Matplotlib、Seaborn、Plotly等库。其强大的工具集包括基于密度的下采样、降维、批次校正、基于 Leiden 的聚类、聚类合并和注释。使用CAFE,我们展示了对一个包含350,000个细胞的人类外周血单核细胞(PBMC)数据集的分析,识别出16个不同的细胞簇。CAFE可以通过交互式滑块控件和下拉菜单实时生成可用于发表的图形,无需编码专业知识,使所有人都能进行高维数据分析。CAFE遵循MIT许可,可在https://github.com/mhbsiam/cafe上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验