Alyousef Mohammed H, Kamal Muhammad Shahzad, Murtaza Mobeen, Hussain Syed Muhammad Shakil, Raza Arshad, Patil Shirish, Mahmoud Mohamed
Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 34464, Saudi Arabia.
Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
ACS Omega. 2024 Dec 4;9(50):49804-49815. doi: 10.1021/acsomega.4c08484. eCollection 2024 Dec 17.
In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (>25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.
在化学强化采油(cEOR)中,表面活性剂被广泛使用,但在高盐度盐水中面临重大的稳定性挑战,在这种环境下它们常常会降解或沉淀。现有的方法,如添加助表面活性剂,与阴离子表面活性剂的兼容性有限,并引发经济方面的担忧,因此需要更可靠的解决方案。本研究引入了一种新方法,通过加入二氧化硅(SiO₂)纳米颗粒(NPs)来提高阴离子表面活性剂在极端盐度条件下的稳定性。我们优化后的配方有效防止了表面活性剂沉淀和纳米颗粒聚集,在盐度高达57000 ppm和温度高达70°C的盐水中表现出稳定性,从而解决了传统阴离子表面活性剂如十二烷基硫酸钠(SDS)所存在的耐盐性问题。为了验证我们的配方,我们采用了多种实验技术,包括浊度、ζ电位(ZP)和流体动力学直径(HDD)测量,这些都证实了我们方法的有效性。结果表明,最佳的SiO₂纳米颗粒浓度(0.01 wt%)显著提高了SDS的稳定性,在7天内未观察到聚集或沉淀现象。高绝对值的ZP值(>25 mV)、较小的HDD(约37 nm)以及一致的浊度曲线突出了该配方的稳定性和分散性。这种基于纳米颗粒的方法为化学强化采油提供了一种经济高效且可持续的解决方案,在高盐度和高温条件下提高了表面活性剂的稳定性并改善了纳米颗粒的分散性,代表了化学强化采油技术的一项重要进展。