Suppr超能文献

SCovid v2.0:解读新冠病毒及其他人类冠状病毒跨组织分子特征的综合资源。

SCovid v2.0: a comprehensive resource to decipher the molecular characteristics across tissues in COVID-19 and other human coronaviruses.

作者信息

Zhu Zijun, Chen Xinyu, He Guoyou, Yu Rui, Wang Chao, Qi Changlu, Cheng Liang

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.

NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

Microbiol Spectr. 2025 Feb 4;13(2):e0193324. doi: 10.1128/spectrum.01933-24. Epub 2024 Dec 23.

Abstract

UNLABELLED

SCovid v2.0 (http://bio-annotation.cn/scovid or http://bio-computing.hrbmu.edu.cn/scovid/) is an updated database designed to assist researchers in uncovering the molecular characteristics of coronavirus disease 2019 (COVID-19) across various tissues through transcriptome sequencing. Compared with its predecessor, SCovid v2.0 is enhanced with comprehensive data, practical functionalities, and a reconstructed pipeline. The current release includes (i) 3,544,360 cells from 45 single-cell RNA-seq (scRNA-seq) data sets encompassing 789 samples from 15 tissues; (ii) the addition of 62 COVID-19 bulk RNA-seq data comprising 1,688 samples from 12 tissues; (iii) incorporation of seven bulk RNA-seq data sets related to other human coronaviruses, such as HCoV-229E, HCoV-OC43, and MERS-CoV for a thorough comparative analysis of pan-coronavirus mechanisms in COVID-19; and (iv) systematic comparisons between the data sets conducted using standardized procedures. Furthermore, we have developed an advanced search engine and upgraded web interface to browse, search, visualize, and download detailed information. Overall, SCovid v2.0 is a valuable resource for exploring molecular characteristics of COVID-19 across different tissues.

IMPORTANCE

This manuscript provides a comprehensive analysis of the molecular characteristics of COVID-19 through cross-tissue transcriptome analysis, contributing to the understanding of COVID-19 by clinicians and scientists. Considering the cyclical nature of coronavirus outbreaks, this updated database adds transcriptome data on other human coronaviruses, contributing to potential and existing mechanisms of other human coronaviruses.

摘要

未标注

SCovid v2.0(http://bio-annotation.cn/scovidhttp://bio-computing.hrbmu.edu.cn/scovid/)是一个经过更新的数据库,旨在通过转录组测序帮助研究人员揭示2019冠状病毒病(COVID-19)在各种组织中的分子特征。与之前的版本相比,SCovid v2.0在数据全面性、实用功能和重建的流程方面都有所增强。当前版本包括:(i)来自45个单细胞RNA测序(scRNA-seq)数据集的3544360个细胞,这些数据集涵盖了来自15个组织的789个样本;(ii)新增了62个COVID-19全转录组RNA测序(bulk RNA-seq)数据集,包含来自12个组织的1688个样本;(iii)纳入了7个与其他人类冠状病毒相关的全转录组RNA测序数据集,如HCoV-229E、HCoV-OC43和MERS-CoV,以便对COVID-19中的泛冠状病毒机制进行全面比较分析;以及(iv)使用标准化程序对数据集进行系统比较。此外,我们还开发了一个先进的搜索引擎并升级了网络界面,用于浏览、搜索、可视化和下载详细信息。总体而言,SCovid v2.0是探索COVID-19在不同组织中分子特征的宝贵资源。

重要性

本手稿通过跨组织转录组分析对COVID-19的分子特征进行了全面分析,有助于临床医生和科学家对COVID-19的理解。考虑到冠状病毒爆发的周期性,这个更新后的数据库增加了其他人类冠状病毒的转录组数据,有助于了解其他人类冠状病毒的潜在机制和现有机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec5/11792472/cd87fc449399/spectrum.01933-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验