Domingo-Serrano Lucía, Sanchis-López Claudia, Alejandre Carla, Soldek Joanna, Palacios José Manuel, Albareda Marta
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0138524. doi: 10.1128/aem.01385-24. Epub 2024 Dec 23.
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal /legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
在与豆科植物建立共生关系的过程中,根瘤菌会面临恶劣的物理和化学微环境,需要进行适应。先前研究表明,包括小分子热休克蛋白(sHSPs)在内的应激反应蛋白在不同宿主中由蚕豆生物变种UPM791诱导产生的类菌体中受到差异调节。在本研究中,我们对宿主依赖性sHSP RLV_1399进行了功能分析。缺失突变株在与豌豆的共生性能上受损,但与小扁豆植株共生时不受影响。该基因的表达在微需氧条件下以FnrN依赖性方式被诱导,这与其调控区域中存在厌氧盒一致。过表达这种sHSP可提高细菌培养物在暴露于过氧化氢和阳离子结节特异性富含半胱氨酸(NCR)抗菌肽后的活力。共纯化实验已鉴定出与固氮酶合成、应激反应、碳氮代谢以及其他相关细胞功能有关的蛋白质,作为豌豆类菌体中RLV_1399的潜在底物。这些结果,连同根瘤菌基因组中该基因存在异常高数量的拷贝,表明sHSPs可能在细菌适应宿主内应激条件中发挥重要作用。
鉴定和分析宿主依赖性细菌应激反应所涉及的机制对于开发最佳豆科植物组合以最大化固氮用于接种剂开发很重要,并且可能也适用于将固氮扩展到其他作物。本研究中呈现的数据表明,sHSP RLV_1399是细菌应激反应的一部分,以应对每种豆科宿主提供的特定应激条件。鉴定出多种sHSP潜在靶点揭示了该蛋白保护类菌体基本功能的潜力。固氮酶是最丰富的RLV_1399底物这一发现表明,该蛋白是实现最佳固氮共生所必需的。