Suppr超能文献

用于结外自然杀伤/T细胞淋巴瘤预后分层的强大且可解释的深度学习系统。

Robust and interpretable deep learning system for prognostic stratification of extranodal natural killer/T-cell lymphoma.

作者信息

Jiang Chong, Jiang Zekun, Zhang Xinyu, Qu Linhao, Fu Kexue, Teng Yue, Lai Ruihe, Guo Rui, Ding Chongyang, Li Kang, Tian Rong

机构信息

Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, 610041, China.

West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Apr;52(5):1739-1750. doi: 10.1007/s00259-024-07024-x. Epub 2024 Dec 23.

Abstract

PURPOSE

Extranodal natural killer/T-cell lymphoma (ENKTCL) is an hematologic malignancy with prognostic heterogeneity. We aimed to develop and validate DeepENKTCL, an interpretable deep learning prediction system for prognosis risk stratification in ENKTCL.

METHODS

A total of 562 patients from four centers were divided into the training cohort, validation cohort and test cohort. DeepENKTCL combined a tumor segmentation model, a PET/CT fusion model, and prognostic prediction models. RadScore and TopoScore were constructed using radiomics and topological features derived from fused images, with SHapley Additive exPlanations (SHAP) analysis enhancing interpretability. The final prognostic models, termed FusionScore, were developed for predicting progression-free survival (PFS) and overall survival (OS). Performance was assessed using area under the receiver operator characteristic curve (AUC), time-dependent C-index, clinical decision curves (DCA), and Kaplan-Meier (KM) curves.

RESULTS

The tumor segmentation model accurately delineated the tumor lesions. RadScore (AUC: 0.908 for PFS, 0.922 for OS in validation; 0.822 for PFS, 0.867 for OS in test) and TopoScore (AUC: 0.756 for PFS, 0.805 for OS in validation; 0.689 for PFS, 0.769 for OS in test) both exhibited potential prognostic capability. The time-dependent C-index (0.897 for PFS, 0.928 for OS in validation; 0.894 for PFS, 0.868 for OS in test) and DCA indicated that FusionScore offers significant prognostic performance and superior net clinical benefits compared to existing models. KM survival analysis showed that higher FusionScores correlated with poorer PFS and OS across all cohorts.

CONCLUSION

DeepENKTCL provided a robust and interpretable framework for ENKTCL prognosis, with the potential to improve patient outcomes and guide personalized treatment.

摘要

目的

结外自然杀伤/T细胞淋巴瘤(ENKTCL)是一种预后具有异质性的血液系统恶性肿瘤。我们旨在开发并验证DeepENKTCL,这是一种用于ENKTCL预后风险分层的可解释深度学习预测系统。

方法

来自四个中心的562例患者被分为训练队列、验证队列和测试队列。DeepENKTCL结合了肿瘤分割模型、PET/CT融合模型和预后预测模型。使用从融合图像中提取的放射组学和拓扑特征构建RadScore和TopoScore,并通过SHapley加性解释(SHAP)分析增强可解释性。开发了最终的预后模型,即FusionScore,用于预测无进展生存期(PFS)和总生存期(OS)。使用受试者操作特征曲线下面积(AUC)、时间依赖性C指数、临床决策曲线(DCA)和Kaplan-Meier(KM)曲线评估性能。

结果

肿瘤分割模型准确勾勒出肿瘤病变。RadScore(验证组中PFS的AUC为0.908,OS为0.922;测试组中PFS为0.822,OS为0.867)和TopoScore(验证组中PFS的AUC为0.756,OS为0.805;测试组中PFS为0.689,OS为0.769)均表现出潜在的预后能力。时间依赖性C指数(验证组中PFS为0.897,OS为0.928;测试组中PFS为0.894,OS为0.868)和DCA表明,与现有模型相比,FusionScore具有显著的预后性能和更高的净临床效益。KM生存分析表明,在所有队列中,较高的FusionScore与较差的PFS和OS相关。

结论

DeepENKTCL为ENKTCL预后提供了一个强大且可解释的框架,具有改善患者预后和指导个性化治疗的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验