Das Suma, Pramanik Swapnamoy, Nair Ranjith G, Chowdhury Avijit
Solar Energy Materials Research and Testing Laboratory (SMaRT Lab), Department of Physics, National Institute of Technology Silchar, Assam, 788010, India.
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India.
Chem Asian J. 2025 Apr 3;20(7):e202401402. doi: 10.1002/asia.202401402. Epub 2025 Jan 13.
Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFeO@g-CN heterojunctions were developed by embedding p-type NiFeO nanoparticles (NPs) within n-type porous ultrathin g-CN (p-uCN) nanosheets. The optimized NiFeO@g-CN, loaded with 20 wt % magnetic counterparts, exhibits exceptional photocatalytic methylene blue (MB) degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.062 min and 0.161 min, respectively. These performance metrics are 1.3 and 2.55 fold higher than p-uCN (0.048 min and 0.063 min) and 51.6 and 17.4 fold higher than NiFO (0.0012 min and 0.009 min). Notably, mp-NiF@uCN-20 % with 1.0 wt % of Pt loading achieves the highest H evolution rate of 2294 μmolgh, which is 3.72, 1.52, and 13.49 times higher than that of pure CN, p-uCN, and NiFO, respectively. The enhanced performance is corroborated by increased surface area, improved separation of charge carriers, and effective charge transfer, which enables simultaneous reduction and oxidation processes. Further, the magnetic nanocomposite exhibits remarkable stability even after multiple runs, indicating their reusability. The experimental findings emphasize the importance of p-n heterojunctions, interfacial band alignment, and mesoporous architecture in enhancing the photocatalytic efficiency of NiFeO@g-CN nanocomposites.
具有精确设计界面和介孔结构的质量分数优化异质结复合材料对于提高光吸收、最小化电子 - 空穴复合以及提高整体催化效率至关重要。在此,通过将p型NiFeO纳米颗粒(NPs)嵌入n型多孔超薄g - CN(p - uCN)纳米片中,制备了高效的介孔 - NiFeO@g - CN异质结。负载20 wt%磁性对应物的优化后的NiFeO@g - CN表现出优异的光催化亚甲基蓝(MB)降解性能,在光催化和光芬顿过程中均实现了最高性能,速率常数分别为0.062 min和0.161 min。这些性能指标分别比p - uCN(0.048 min和0.063 min)高1.3倍和2.55倍,比NiFO(0.0012 min和0.009 min)高51.6倍和17.4倍。值得注意的是,负载1.0 wt%Pt的mp - NiF@uCN - 20%实现了最高的析氢速率2294 μmolgh,分别比纯CN、p - uCN和NiFO高3.72倍、1.52倍和13.49倍。表面积增加、电荷载流子分离改善和有效电荷转移证实了性能的增强,这使得同时进行还原和氧化过程成为可能。此外,磁性纳米复合材料即使在多次运行后仍表现出显著的稳定性,表明它们具有可重复使用性。实验结果强调了p - n异质结、界面能带排列和介孔结构在提高NiFeO@g - CN纳米复合材料光催化效率方面的重要性。