Poudel Suresh, Yuan Zuo-Fei, Fu Yingxue, Wu Long, Shrestha Him, High Anthony A, Peng Junmin, Wang Xusheng
Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
Department of Structural Biology, and Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
J Proteome Res. 2025 Feb 7;24(2):410-418. doi: 10.1021/acs.jproteome.4c00410. Epub 2024 Dec 23.
The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries. Here, we introduce JUMPlib, a computational tool for a TMT-based spectral library search. JUMPlib comprises components for generating spectral libraries, conducting library searches, filtering peptide identifications, and quantifying peptides and proteins. Fragment ion indexing in the libraries increases the search speed and utilizing the experimental retention time of precursor ions improves peptide identification. We found that methionine oxidation is a major factor contributing to large shifts in peptide retention time. To test the JUMPlib program, we curated two comprehensive human libraries for the labeling of TMT6/10/11 and TMT16/18 reagents, with ∼286,000 precursor ions and ∼304,000 precursor ions, respectively. Our analyses demonstrate that JUMPlib, employing the fragment ion index strategy, enhances search speed and exhibits high sensitivity and specificity, achieving approximately a 25% increase in peptide-spectrum matches compared to other search tools. Overall, JUMPlib serves as a streamlined computational platform designed to enhance peptide identification in TMT-based proteomics. Both the JUMPlib source code and libraries are publicly available.
肽段鉴定是基于质谱的蛋白质组学的基石。基于谱图库的算法是蛋白质组学数据库搜索中提高肽段鉴定效率的成熟方法。然而,由于缺乏高质量的串联质谱标签(TMT)谱图库,这些算法并非专门为基于TMT的蛋白质组学量身定制。在此,我们介绍JUMPlib,一种用于基于TMT的谱图库搜索的计算工具。JUMPlib包含用于生成谱图库、进行库搜索、过滤肽段鉴定以及对肽段和蛋白质进行定量的组件。库中的碎片离子索引提高了搜索速度,利用前体离子的实验保留时间改善了肽段鉴定。我们发现甲硫氨酸氧化是导致肽段保留时间大幅变化的主要因素。为了测试JUMPlib程序,我们分别为TMT6/10/11和TMT16/18试剂的标记策划了两个全面的人类库,分别包含约286,000个前体离子和约304,000个前体离子。我们的分析表明,采用碎片离子索引策略的JUMPlib提高了搜索速度,具有高灵敏度和特异性,与其他搜索工具相比,肽段-谱图匹配数增加了约25%。总体而言,JUMPlib是一个简化的计算平台,旨在提高基于TMT的蛋白质组学中的肽段鉴定。JUMPlib的源代码和库均可公开获取。