Cai Xiangheng, Zhang Mengnan, Zou Jiaqi, Wang Le, Zhan Yixiang, Li Dandan, Jiang Tingsheng, Alim Nijat, Liu Zhaoce, Yang Jiuxia, Liu Na, Liu Tengli, Sun Peng, Ding Xuejie, Zhang Boya, Liu Zewen, Wang Xuelian, Liang Rui, Cai Jinzhen, Gao Jie, Cao Jinglin, Wang Shusen
NHC Key Laboratory for Critical Care Medicine, School of Medicine, Tianjin First Central Hospital, Research Institute of Transplant Medicine, Organ Transplant Center, Nankai University, Tianjin, 300071, China.
Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266035, China.
J Nanobiotechnology. 2024 Dec 23;22(1):792. doi: 10.1186/s12951-024-03072-5.
Islet transplantation is a promising therapy for diabetes, yet the limited survival and functionality of transplanted islet grafts hinder optimal outcomes. Glucagon-like peptide-1 (GLP-1), an endogenous hormone, has shown potential to enhance islet survival and function; however, its systemic administration can result in poor localization and undesirable side effects. To address these challenges, we developed a novel peptide-based nanofiber hydrogel incorporating GLP-1 functionality for localized delivery. By conjugating the FFG tripeptide (a self-assembling motif derived from phenylalanine-phenylalanine-glycine) to the C-terminus of native GLP-1, we engineered GLP-1-FFG, a self-assembling peptide that forms a robust nanofiber structure resistant to enzymatic degradation. When GLP-1-FFG co-assembles with the biotin-FYIGSRGD peptide (referred to as SupraGel), a self-assembling supramolecular polypeptide hydrogel we previously identified containing motifs derived from extracellular matrix components, the resulting hydrogel (SupraGel + GLP-1-FFG) creates a stable nanofibrous network with excellent rheological properties. In vitro, this nanofiber hydrogel significantly improves islet function and survival. Bulk RNA sequencing results demonstrate that the hydrogel suppresses the expression of hypoxia-related genes, downregulates pro-inflammatory genes, and upregulates genes associated with islet function. Further analysis reveals that these effects are related to the activation of the AKT signaling pathway. In a syngeneic mouse islet transplantation model, the localized application of SupraGel + GLP-1-FFG at the renal subcapsular islet transplant site significantly enhanced the efficacy of marginal-dose islet transplantation, as shown by improved glycemic control, faster and higher rates of diabetes reversal, better glucose tolerance, and greater islet graft survival in diabetic recipient mice. This innovative nanotechnology-based hydrogel offers a promising strategy for enhancing the efficacy of islet grafts in transplantation therapy.
胰岛移植是一种很有前景的糖尿病治疗方法,但移植胰岛移植物的有限存活和功能阻碍了最佳治疗效果。胰高血糖素样肽-1(GLP-1)作为一种内源性激素,已显示出增强胰岛存活和功能的潜力;然而,其全身给药会导致定位不佳和不良副作用。为应对这些挑战,我们开发了一种新型的基于肽的纳米纤维水凝胶,其具有GLP-1功能用于局部递送。通过将FFG三肽(一种源自苯丙氨酸-苯丙氨酸-甘氨酸的自组装基序)与天然GLP-1的C末端偶联,我们构建了GLP-1-FFG,一种能形成抗酶降解的坚固纳米纤维结构的自组装肽。当GLP-1-FFG与生物素-FYIGSRGD肽(称为SupraGel)共同组装时,SupraGel是我们之前鉴定的一种自组装超分子多肽水凝胶,含有源自细胞外基质成分的基序,由此产生的水凝胶(SupraGel + GLP-1-FFG)形成了具有优异流变学特性的稳定纳米纤维网络。在体外,这种纳米纤维水凝胶显著改善胰岛功能和存活。大量RNA测序结果表明,该水凝胶抑制缺氧相关基因的表达,下调促炎基因,并上调与胰岛功能相关的基因。进一步分析表明,这些作用与AKT信号通路的激活有关。在同基因小鼠胰岛移植模型中,在肾被膜下胰岛移植部位局部应用SupraGel + GLP-1-FFG显著提高了低剂量胰岛移植的疗效,表现为血糖控制改善、糖尿病逆转速度更快且逆转率更高、葡萄糖耐量更好以及糖尿病受体小鼠中胰岛移植物存活时间更长。这种基于创新纳米技术的水凝胶为提高移植治疗中胰岛移植物的疗效提供了一种有前景的策略。