Murase Kenya, Nakamoto Atsushi, Tomiyama Noriyuki
Department of Future Diagnostic Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
J Appl Clin Med Phys. 2025 Feb;26(2):e14586. doi: 10.1002/acm2.14586. Epub 2024 Dec 23.
To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data.
DCE-MRI data for simulation studies were synthesized using the extended Tofts model and a population-averaged arterial input function (AIF). The ranges of PK parameters for training the RNNs were determined from data of patients with brain tumors. The effects of the number of training samples, number of hidden units, dropout rate (DR), and bolus arrival time delay and dispersion in AIF on the accuracy of the PK parameters were investigated, and the uncertainties for different DRs and peak signal-to-noise ratios (PSNRs) were quantified. For comparison, PK parameters were estimated using the nonlinear least-squares method. In the clinical studies, the PK parameter and uncertainty images were generated by applying the trained RNNs to DCE-MRI data.
Compared with GRU, the computational cost for training the LSTM was significantly higher. The prediction accuracy of GRU decreased with decreasing numbers of training samples and hidden units, whereas the performance of LSTM remained stable. Despite an increased computational cost, MCD reduced the prediction error at low PSNR and improved the quality of PK parameter images. The simulation results recommended using a DR of 0.25-0.5 at low PSNR and ≤ 0.25 for other PSNRs. The clinical studies recommended using a DR of 0.25 and 0.5 for LSTM and GRU, respectively.
MCD is effective in quantifying uncertainty in PK parameter prediction from DCE-MRI data and improves their performance, particularly at low PSNR; however, at the expense of increased computational cost. This study helps deepen our understanding of RNNs with MCD and select suitable hyperparameters for creating an RNN architecture for DCE-MRI studies.
使用蒙特卡罗随机失活(MCD)定量评估两种循环神经网络(RNN),即长短期记忆网络(LSTM)和门控循环单元(GRU),从动态对比增强磁共振成像(DCE-MRI)数据预测药代动力学(PK)参数的性能。
使用扩展的Tofts模型和群体平均动脉输入函数(AIF)合成用于模拟研究的DCE-MRI数据。根据脑肿瘤患者的数据确定训练RNN的PK参数范围。研究了训练样本数量、隐藏单元数量、随机失活率(DR)以及AIF中的团注到达时间延迟和离散度对PK参数准确性的影响,并对不同DR和峰值信噪比(PSNR)的不确定性进行了量化。为作比较,使用非线性最小二乘法估计PK参数。在临床研究中,将训练好的RNN应用于DCE-MRI数据生成PK参数和不确定性图像。
与GRU相比,训练LSTM的计算成本显著更高。GRU的预测准确性随着训练样本数量和隐藏单元数量的减少而降低,而LSTM的性能保持稳定。尽管计算成本增加,但MCD在低PSNR时降低了预测误差并提高了PK参数图像的质量。模拟结果建议在低PSNR时使用0.25 - 0.5的DR,其他PSNR时使用≤0.25的DR。临床研究建议LSTM和GRU分别使用0.25和0.5的DR。
MCD有效地量化了从DCE-MRI数据预测PK参数时的不确定性并提高了其性能,尤其是在低PSNR时;然而,代价是计算成本增加。本研究有助于加深我们对使用MCD的RNN的理解,并为创建用于DCE-MRI研究的RNN架构选择合适的超参数。