Lin Yanru, Chen Chong, Chen Weizhen, Liu Hangcheng, Xiao Renhao, Ji Hongtao, Li Xia
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Adv Sci (Weinh). 2025 Feb;12(7):e2412104. doi: 10.1002/advs.202412104. Epub 2024 Dec 24.
Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited. Here, this work conducts a comprehensive RNA-seq of the roots, cotyledons and leaves of inoculated-soybean. This work finds 88,814 mRNAs and 6,156 noncoding RNAs (ncRNAs) across various organs. Notably, this work identifies 6,679 nodulation-regulated mRNAs (NR-mRNAs), 1,681 long noncoding RNAs (lncRNAs) (NR-lncRNAs), and 59 miRNAs (NR-miRNAs). The majority of these NR-RNAs are associated with plant-microbial interaction and exhibit high organ specificity. Roots display the highest abundance of NR-ncRNAs and the most dynamic crosstalk between NR-lncRNAs and NR-miRNAs in a GmNARK-dependent manner. This indicates that while each tissue responds uniquely, GmNARK serves as a primary regulator of the transcriptional control of nodulated-plants. Furthermore, this work proves that lnc-NNR6788 and lnc-NNR7059 promote nodulation by regulating their target genes. This work also shows that the nodulation- and GmNARK-regulated (NNR) lnc-NNR4481 negatively regulates nodulation through miR172c within a competing endogenous RNA (ceRNA) network. The spatial organ-type transcriptomic atlas establishes a benchmark and provides a valuable resource for integrative analyses of the mechanism underlying of nodulation and plant growth balance.
共生固氮作用(SNF)为大豆提供氮素。通过高效SNF提高产量的一个主要挑战在于,要在其高能量消耗与植物生长之间取得平衡。然而,结瘤过程中的系统性转录重编程仍然有限。在此,本研究对接种大豆的根、子叶和叶片进行了全面的RNA测序。本研究在各个器官中发现了88,814个mRNA和6,156个非编码RNA(ncRNA)。值得注意的是,本研究鉴定出6,679个结瘤调控mRNA(NR-mRNA)、1,681个长链非编码RNA(lncRNA)(NR-lncRNA)和59个miRNA(NR-miRNA)。这些NR-RNA中的大多数与植物-微生物相互作用相关,并表现出高度的器官特异性。根中NR-ncRNA的丰度最高,并且NR-lncRNA和NR-miRNA之间以GmNARK依赖的方式存在最活跃的相互作用。这表明,虽然每个组织的反应都独特,但GmNARK是结瘤植物转录调控的主要调节因子。此外,本研究证明lnc-NNR6788和lnc-NNR7059通过调控其靶基因促进结瘤。本研究还表明,结瘤和GmNARK调控的(NNR)lnc-NNR4481在竞争性内源RNA(ceRNA)网络中通过miR172c负调控结瘤。空间器官类型转录组图谱建立了一个基准,并为结瘤和植物生长平衡潜在机制的综合分析提供了宝贵资源。