Suppr超能文献

用于豌豆主要成分检测和品质分级的高通量近红外光谱技术

High-throughput near-infrared spectroscopy for detection of major components and quality grading of peas.

作者信息

Zhu Jingwen, Ji Guozhi, Chen Bingyu, Yan Bangyu, Ren Feiyue, Li Ning, Zhu Xuchun, He Shan, Mu Zhishen, Liu Hongzhi

机构信息

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing, China.

Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia, China.

出版信息

Front Nutr. 2024 Dec 9;11:1505407. doi: 10.3389/fnut.2024.1505407. eCollection 2024.

Abstract

Pea ( L.) is a nutrient-dense legume whose nutritional indicators influence its functional qualities. Traditional methods to identify these components and examine the relationships between their contents could be more laborious, hindering the quality assessment of the varieties of peas. This study conducted a statistical analysis of data about the sensory and physicochemical nutritional attributes of peas acquired using traditional techniques. Additionally, 90 sets of spectral data were obtained using a portable near-infrared spectrometer, which were then integrated with chemical values to create a near-infrared model for the basic ingredient content of peas. The correlation analysis revealed significant findings: pea starch displayed a substantial negative correlation with moisture, crude fiber, and crude protein, while showing a highly significant positive correlation with pea seed thickness. Furthermore, pea protein exhibited a significant positive correlation with crude fiber and crude fat. Cluster analysis classified all pea varieties into three distinct groups, successfully distinguishing those with elevated protein content, high starch content, and low-fat content. The combined contribution of PC1 and PC2 in the principal component analysis (PCA) was 51.2%. Partial least squares regression (PLSR) and other spectral preprocessing methods improved the predictive model, which performed well with an external dataset, with calibration coefficients of 0.89-0.99 and prediction coefficients of 0.71-0.88. This method enables growers and processors to efficiently analyze the composition of peas and evaluate crop quality, thereby enhancing food industry development.

摘要

豌豆(L.)是一种营养丰富的豆类,其营养指标会影响其功能品质。识别这些成分并研究其含量之间关系的传统方法可能会更加费力,这阻碍了豌豆品种的质量评估。本研究对使用传统技术获取的豌豆感官和理化营养属性数据进行了统计分析。此外,使用便携式近红外光谱仪获得了90组光谱数据,然后将其与化学值整合,以建立豌豆基本成分含量的近红外模型。相关性分析得出了重要结果:豌豆淀粉与水分、粗纤维和粗蛋白呈显著负相关,而与豌豆种子厚度呈极显著正相关。此外,豌豆蛋白与粗纤维和粗脂肪呈显著正相关。聚类分析将所有豌豆品种分为三个不同的组,成功区分了蛋白质含量高、淀粉含量高和脂肪含量低的品种。主成分分析(PCA)中PC1和PC2的综合贡献率为51.2%。偏最小二乘回归(PLSR)和其他光谱预处理方法改进了预测模型,该模型在外部数据集上表现良好,校准系数为0.89 - 0.99,预测系数为0.71 - 0.88。该方法使种植者和加工者能够有效地分析豌豆的成分并评估作物质量,从而促进食品工业的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96bb/11663664/ed582f029772/fnut-11-1505407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验