Suppr超能文献

新冠疫情期间中英文社交媒体上健康相关错误信息传播的知识图谱与新趋势映射:一项比较文献计量与可视化分析

Mapping Knowledge Landscapes and Emerging Trends for the Spread of Health-Related Misinformation During the COVID-19 on Chinese and English Social Media: A Comparative Bibliometric and Visualization Analysis.

作者信息

He Yunfan, Liang Jun, Fu Wenguang, Liu Yongcheng, Yang Fangyu, Ding Shunjing, Lei Jianbo

机构信息

School of International Relations and Public Affairs, Fudan University, Shanghai, People's Republic of China.

National Institute of Intelligent Evaluation and Governance, Fudan University, Shanghai, People's Republic of China.

出版信息

J Multidiscip Healthc. 2024 Dec 19;17:6043-6057. doi: 10.2147/JMDH.S501067. eCollection 2024.

Abstract

BACKGROUND

Online health-related misinformation poses a serious threat to public health. As the coronavirus disease 2019 (COVID-19) pandemic aggravated the spread of misinformation regarding COVID-19, relevant research has surged.

OBJECTIVE

To systematically summarize Chinese and English articles regarding health-related misinformation about COVID-19 on social media and quantitatively describe research progress.

METHODS

Using bibliometrics, we systematically analyzed and compared the characteristics of scientific articles in English and Chinese, examining article numbers, journals, authors, countries, institutions, funding, and research topics, and compared changes in popular research topics.

RESULTS

This study analyzed 1,294 articles, revealing a significant increase in article numbers and citations during the COVID-19 pandemic (1.94 times and 2.95 times, respectively, compared to pre-pandemic data). However, high-impact articles were scarce and the field lacked a core group of authors and collaborative networks. China had the largest number of papers (n=266) and funds (n=292), but articles in English exceeded by far those in Chinese (1,131 vs 163, respectively). Regarding article topics, the transformation from qualitative small-data analyses to quantitative empirical big-data research has been realized.

CONCLUSION

With the maturity of natural language processing technology, in-depth mining of massive user-generated content has become a hot spot. The outbreak of the COVID-19 pandemic has prompted the research focus to shift from misinformation-related health problems to social problems involving the sources, content, channels, audiences, and effects of communication networks. Using artificial intelligence technology like machine learning to deeply mine large amounts of user-generated content on social media will be a future research hot spot.

摘要

背景

与健康相关的网络错误信息对公众健康构成严重威胁。随着2019冠状病毒病(COVID-19)大流行加剧了关于COVID-19错误信息的传播,相关研究激增。

目的

系统总结关于社交媒体上COVID-19健康相关错误信息的中英文文章,并定量描述研究进展。

方法

我们运用文献计量学方法,系统分析和比较中英文科学文章的特征,考察文章数量、期刊、作者、国家、机构、资金和研究主题,并比较热门研究主题的变化。

结果

本研究分析了1294篇文章,发现COVID-19大流行期间文章数量和被引次数显著增加(分别是大流行前数据的1.94倍和2.95倍)。然而,高影响力文章稀缺,该领域缺乏核心作者群体和合作网络。中国的论文数量(n = 266)和资金数量(n = 292)最多,但英文文章数量远远超过中文文章(分别为1131篇和163篇)。关于文章主题,已实现从定性小数据分析到定量实证大数据研究的转变。

结论

随着自然语言处理技术的成熟,对海量用户生成内容的深度挖掘已成为热点。COVID-19大流行的爆发促使研究重点从与错误信息相关的健康问题转向涉及传播网络的来源、内容、渠道、受众和影响的社会问题。利用机器学习等人工智能技术对社交媒体上大量用户生成内容进行深度挖掘将是未来的研究热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe96/11665173/ebc919841e8a/JMDH-17-6043-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验