Moyeen Abdullah Al, Mahmud Raiyana Mashfiqua, Mazumder Durjoy Datta, Ghosh Sondip, Datta Orchi, Molla Anik, Begum M Esmotara
Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi-6204, Bangladesh.
Department of Materials Science & Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi-6204, Bangladesh.
Heliyon. 2024 Nov 28;10(23):e40776. doi: 10.1016/j.heliyon.2024.e40776. eCollection 2024 Dec 15.
This study explored the structural, optical, antibacterial, and dielectric properties of TiO nanoparticles synthesized using two distinct approaches: sol-gel and biosynthesis. Density functional tight binding (DFTB+) and density functional theory (DFT) calculations were employed alongside experimental techniques to gain a comprehensive understanding of the electronic-property relationships. peel extract was utilized for the biosynthesis method. X-ray diffraction (XRD) affirmed the anatase phase formation for both nanoparticles. Rietveld technique was employed for a detailed structural analysis. The FESEM analysis revealed the diminutive particle size of TiO nanoparticles with a comparable size distribution for both variants. However, the biosynthesized variant exhibited smaller average particle size (26.74 nm) than the sol-gel variant (32.22 nm). Optical studies showed an absorption redshift for the biosynthesized variant (352 nm) relative to the sol-gel variant (347 nm). The band gap energy is higher for the sol-gel variant (3.17 eV) compared to the biosynthesized variant (3.02 eV). The biosynthesized nanoparticles showed strong antibacterial activity, with inhibition zones of 15 mm against and bacteria. Dielectric analysis revealed that the sol-gel synthesized nanoparticles exhibited a higher dielectric permittivity of 27.80 and a lower dielectric loss of 0.37 at 1 kHz, compared to the biosynthesized nanoparticles, which showed a dielectric permittivity of 19.48 and a dielectric loss of 0.69.
本研究探索了采用两种不同方法合成的二氧化钛纳米颗粒的结构、光学、抗菌和介电性能:溶胶 - 凝胶法和生物合成法。运用密度泛函紧束缚(DFTB +)和密度泛函理论(DFT)计算以及实验技术,以全面了解电子性质关系。果皮提取物用于生物合成方法。X射线衍射(XRD)证实了两种纳米颗粒均形成锐钛矿相。采用Rietveld技术进行详细的结构分析。场发射扫描电子显微镜(FESEM)分析显示,二氧化钛纳米颗粒的粒径较小,两种变体的粒径分布相当。然而,生物合成变体的平均粒径(26.74纳米)比溶胶 - 凝胶变体(32.22纳米)小。光学研究表明,生物合成变体(352纳米)相对于溶胶 - 凝胶变体(347纳米)出现吸收红移。溶胶 - 凝胶变体的带隙能量(3.17电子伏特)高于生物合成变体(3.02电子伏特)。生物合成的纳米颗粒表现出较强的抗菌活性,对[具体细菌1]和[具体细菌2]的抑菌圈为15毫米。介电分析表明,与生物合成的纳米颗粒相比,溶胶 - 凝胶合成的纳米颗粒在1千赫兹时表现出更高的介电常数27.80和更低的介电损耗0.37,生物合成的纳米颗粒的介电常数为19.48,介电损耗为0.69。