Suppr超能文献

使用共配准超声-光声断层图像的参数分析和放射组学分析对卵巢附件病变进行分类和风险评估

Classification and risk assessment of ovarian-adnexal lesions using parametric and radiomic analysis of co-registered ultrasound-photoacoustic tomographic images.

作者信息

Lin Yixiao, Zhu Quing

机构信息

Biomedical Engineering Department, Washington University in St Louis, United States.

Radiology Department, School of Medicine, Washington University in St Louis, United States.

出版信息

Photoacoustics. 2024 Nov 29;41:100675. doi: 10.1016/j.pacs.2024.100675. eCollection 2025 Feb.

Abstract

Ovarian-adnexal lesions are conventionally assessed with ultrasound (US) under the guidance of the Ovarian-Adnexal Reporting and Data System (O-RADS). However, the low specificity of O-RADS results in many unnecessary surgeries. Here, we use co-registered US and photoacoustic tomography (PAT) to improve the diagnostic accuracy of O-RADS. Physics-based parametric algorithms for US and PAT were developed to estimate the acoustic and photoacoustic properties of 93 ovarian lesions. Additionally, statistics-based radiomic algorithms were applied to quantify differences in the lesion texture on US-PAT images. A machine learning model (US-PAT KNN model) was developed based on an optimized subset of eight US and PAT imaging features to classify a lesion as either cancer, one of four subtypes of benign lesions, or a normal ovary. The model achieved an area under the receiver operating characteristic curve (AUC) of 0.969 and a balanced six-class classification accuracy of 86.0 %.

摘要

卵巢附件病变传统上是在卵巢附件报告和数据系统(O-RADS)的指导下通过超声(US)进行评估的。然而,O-RADS的低特异性导致了许多不必要的手术。在此,我们使用联合配准的超声和光声断层扫描(PAT)来提高O-RADS的诊断准确性。开发了基于物理的超声和光声参数算法,以估计93个卵巢病变的声学和光声特性。此外,应用基于统计的放射组学算法来量化超声-光声图像上病变纹理的差异。基于八个超声和光声成像特征的优化子集开发了一个机器学习模型(超声-光声KNN模型),以将病变分类为癌症、四种良性病变亚型之一或正常卵巢。该模型在受试者操作特征曲线(AUC)下的面积为0.969,六类平衡分类准确率为86.0%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b58e/11664067/050f25923001/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验