Wang Yadong, Zhu Jinjin, Liu Shangwen, Sun Zhengbo, Wen Guibiao, Huang Dakun, Chen Mianxiong, Liu Yuchen, Lin Feng
Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.
Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
Onco Targets Ther. 2024 Dec 18;17:1197-1207. doi: 10.2147/OTT.S492659. eCollection 2024.
The FGFR3-TACC3 fusion gene exists in a variety of malignant tumors, including bladder cancer. In our ongoing research on the CRISPR-Cas13a gene-editing system, we reported the use of CRISPR-Cas13a gene-editing system to knockout FGFR3-TACC3 and inhibit the proliferation of bladder tumor cells.
This study aimed to use the CRISPR-Cas13a gene-editing system to target the FGFR3-TACC3 fusion gene in bladder cancer cells, which has the potential to be a new and effective treatment for bladder cancer.
The efficacy of the CRISPR-Cas13a gene-editing system was analysed by qRT-PCR. The inhibitory effects of Cas13a-mediated knockdown of the FGFR3-TACC3 fusion gene on the proliferation of RT4 and RT112 cell lines were assessed utilizing CCK-8, EdU, and organoid formation assays. Subsequently, the comparative tumorigenic capability of RT4 cells with FGFR3-TACC3 knockdown achieved by Cas13a was examined in a nude mouse model.
At the cellular level, the comparative analysis of FGFR3-TACC3 knockdown efficacy between CRISPR-Cas13a and shRNA revealed a more pronounced reduction with the former. This knockdown effectively curtailed cellular proliferation, with CRISPR-Cas13a-mediated knockdown exhibiting a superior inhibitory effect over shRNA-mediated knockdown. In organoid cultures derived from RT4 cells, a similar trend was observed, with Cas13a-mediated knockdown of FGFR3-TACC3 leading to a more substantial suppression of proliferation compared to shRNA-mediated knockdown. In vivo tumor models corroborated these findings, demonstrating a significantly diminished tumor volume in the Cas13a-treated cohort relative to both the control and shRNA-treated groups.
The CRISPR-Cas13a gene-editing system has been demonstrated to significantly suppress tumor proliferation both in vitro and in vivo, thereby presenting itself as a promising candidate for a novel and efficacious therapeutic intervention in bladder cancer treatment.
FGFR3-TACC3融合基因存在于包括膀胱癌在内的多种恶性肿瘤中。在我们正在进行的关于CRISPR-Cas13a基因编辑系统的研究中,我们报道了使用CRISPR-Cas13a基因编辑系统敲除FGFR3-TACC3并抑制膀胱肿瘤细胞的增殖。
本研究旨在使用CRISPR-Cas13a基因编辑系统靶向膀胱癌细胞中的FGFR3-TACC3融合基因,这有可能成为一种新的有效的膀胱癌治疗方法。
通过qRT-PCR分析CRISPR-Cas13a基因编辑系统的疗效。利用CCK-8、EdU和类器官形成试验评估Cas13a介导的FGFR3-TACC3融合基因敲低对RT4和RT112细胞系增殖的抑制作用。随后,在裸鼠模型中检测通过Cas13a实现FGFR3-TACC3敲低的RT4细胞的致瘤能力比较。
在细胞水平上,CRISPR-Cas13a与shRNA之间FGFR3-TACC3敲低效果的比较分析显示,前者的降低更为明显。这种敲低有效地抑制了细胞增殖,与shRNA介导的敲低相比,CRISPR-Cas13a介导的敲低表现出更强的抑制作用。在源自RT4细胞的类器官培养物中,观察到类似的趋势,与shRNA介导的敲低相比,Cas13a介导的FGFR3-TACC3敲低导致增殖的抑制作用更强。体内肿瘤模型证实了这些发现,表明与对照组和shRNA处理组相比,Cas13a处理组的肿瘤体积显著减小。
CRISPR-Cas13a基因编辑系统已被证明在体外和体内均能显著抑制肿瘤增殖,因此是膀胱癌治疗中一种有前景的新型有效治疗干预候选方法。