Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
Protein Cell. 2020 May;11(5):352-365. doi: 10.1007/s13238-020-00699-6. Epub 2020 Mar 13.
With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application.
凭借其在特定基因组编辑中的高效性和易于操作,簇状规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (CAS9) 系统已成为生物医学研究中应用最广泛的基因编辑技术。此外,CRISPR/CAS9 为人类疾病的基因治疗的临床发展也取得了重大进展,其中一些已经进入临床试验阶段。在这里,我们报告说,CAS9 蛋白可以在人类细胞中独立于任何外源性向导 RNA (gRNA) 发挥基因组诱变剂的作用,促进基因组 DNA 双链断裂 (DSB) 损伤和基因组不稳定性。CAS9 与 DNA 依赖性蛋白激酶 (DNA-PK) 复合物的 KU86 亚基相互作用,并破坏 KU86 与其激酶亚基之间的相互作用,导致 DNA-PK 依赖性 DSB 损伤修复通过非同源末端连接 (NHEJ) 途径发生缺陷。XCAS9 是一种潜在具有更高保真度和更广泛兼容性的 CAS9 变体,dCAS9 是一种无核酸酶活性的 CAS9 变体。我们表明,XCAS9 和 dCAS9 也与 KU86 相互作用并破坏 DNA DSB 修复。考虑到 DNA-PK 在维持基因组稳定性中的关键作用以及 DNA DSB 损伤反应对细胞增殖和存活的多效性影响,我们的发现提醒人们注意涉及基于 CRISPR/CAS9 的基因编辑的数据解释,并对 CRISPR/CAS9 系统在临床应用中的安全性提出了严重的担忧。