Suppr超能文献

用于锂离子电池的具有高比容量的三维碳包覆且高负载量的NiO@泡沫镍阳极

Three-dimensional carbon coated and high mass-loaded NiO@Ni foam anode with high specific capacity for lithium ion batteries.

作者信息

Issatayev Nurbolat, Abdumutaliyeva Diana, Tashenov Yerbolat, Yeskozha Dossym, Seipiyev Adilkhan, Bakenov Zhumabay, Nurpeissova Arailym

机构信息

Institute of Batteries 53 Kabanbay Batyr Ave. Astana 010000 Kazakhstan.

Department of Chemistry, L. N. Gumilyov Eurasian National University 2 Satpayev St. Astana 010008 Kazakhstan.

出版信息

RSC Adv. 2024 Dec 23;14(54):40069-40076. doi: 10.1039/d4ra07119k. eCollection 2024 Dec 17.

Abstract

Nickel oxide (NiO) is known for its remarkable theoretical specific capacity, making it a highly appealing option for electrode materials in electrochemical energy storage applications. Nevertheless, its practical use is limited by poor electrochemical performance and complicated electrode fabrication processes. To address these issues, we propose a new anode design comprising an intermediate NiO nanoarray layer and a carbon coating layer grown directly on a three-dimensional (3D) conductive nickel foam substrate, designated as C@NiO@Ni foam. This anode with a high NiO mass loading of 5-6 mg cm is fabricated by a two-step process: thermal oxidation of the nickel foam, followed by carbon coating. The 3D architecture, with its large surface area, significantly enhances the contact between the electrode and electrolyte, thereby shortening the Li-ion diffusion pathway. Additionally, the carbon layer plays a crucial role in accommodating the volume changes of NiO during cycling, preventing the detachment of NiO from the Ni foam substrate, and enhancing the electronic conductivity of the C@NiO@Ni foam. The resulting porous C@NiO@Ni anode was thoroughly analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). When used as an anode material for lithium-ion batteries (LIBs), this anode showcased an impressive reversible capacity of around 678 mA h g at 0.1C after 100 cycles. Furthermore, it demonstrated excellent electrochemical performance at a high current, sustaining a specific capacity of 387 mA h g at 1C after 100 cycles.

摘要

氧化镍(NiO)以其卓越的理论比容量而闻名,这使其成为电化学储能应用中电极材料极具吸引力的选择。然而,其实际应用受到电化学性能不佳和电极制造工艺复杂的限制。为了解决这些问题,我们提出了一种新的阳极设计,该设计包括一个中间的NiO纳米阵列层和一个直接生长在三维(3D)导电泡沫镍基板上的碳涂层,命名为C@NiO@Ni泡沫。这种具有5-6 mg cm高NiO质量负载的阳极是通过两步工艺制造的:首先对泡沫镍进行热氧化,然后进行碳涂层。这种3D结构具有大表面积,显著增强了电极与电解质之间的接触,从而缩短了锂离子扩散路径。此外,碳层在循环过程中对适应NiO的体积变化、防止NiO从泡沫镍基板上脱落以及提高C@NiO@Ni泡沫的电子导电性方面起着关键作用。使用扫描电子显微镜(SEM)、X射线衍射(XRD)和能量色散X射线光谱(EDS)对所得的多孔C@NiO@Ni阳极进行了全面分析。当用作锂离子电池(LIBs)的阳极材料时,该阳极在0.1C下100次循环后展现出约678 mA h g的令人印象深刻的可逆容量。此外,它在高电流下表现出优异的电化学性能,在1C下100次循环后维持387 mA h g的比容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验