Suppr超能文献

封装于石墨中的P掺杂Ni/NiO异质结构蛋黄壳纳米球用于增强锂存储性能

P-Doped Ni/NiO Heterostructured Yolk-Shell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage.

作者信息

Xu Liqianyun, Zhang Xixue, Chen Renjie, Wu Feng, Li Li

机构信息

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China.

出版信息

Small. 2022 Feb;18(7):e2105897. doi: 10.1002/smll.202105897. Epub 2021 Dec 7.

Abstract

The development of high-efficiency lithium-ion battery electrodes composed of recycled materials is crucial for the commercialization of retired batteries, but it remains a significant barrier. The usage and recycling of spent graphite are encouraged by the huge number of batteries that are going to be dismantled. Here, an anode made of phosphorus-doped Ni/NiO yolk-shell nanospheres embedded on wasted graphite is developed. Electroless deposition and a subsequent heat-treatment procedure are used to make it in a methodical manner. The internal vacuum space of the nanospheres mitigates volume expansion and facilitates Li diffusion, whereas the embedded metallic Ni and conductive graphite layer expedite charge transfer. The optimal reusable composite electrode is ecologically benign and has high specific capacities (724 mAh g at 0.1 A g ) as well as outstanding cycle stability (500 cycles). The unusual 3D sandwich-like arrangement with strong spent graphite, the yolk-shell hetero-structure, continuous electron/ion transport routes, and attractive structure stability all contribute to this degree of performance. Such a nanoscale design and engineering strategy not only provides a green recovery method for anode graphite, but also enlightens other nanocomposites to boost their lithium storage performance.

摘要

由回收材料制成的高效锂离子电池电极的开发对于退役电池的商业化至关重要,但它仍然是一个重大障碍。大量即将被拆解的电池促使了废石墨的使用和回收。在此,开发了一种由嵌入废石墨的磷掺杂Ni/NiO蛋黄壳纳米球制成的阳极。采用化学镀和后续热处理工艺以有条不紊的方式制备它。纳米球的内部真空空间减轻了体积膨胀并促进了锂扩散,而嵌入的金属镍和导电石墨层加快了电荷转移。这种最佳的可重复使用复合电极具有生态友好性,具有高比容量(在0.1 A g时为724 mAh g)以及出色的循环稳定性(500次循环)。具有强废石墨的特殊三维三明治状排列、蛋黄壳异质结构、连续的电子/离子传输路线以及吸引人的结构稳定性都促成了这种性能水平。这种纳米级设计和工程策略不仅为阳极石墨提供了一种绿色回收方法,还启发了其他纳米复合材料提高其锂存储性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验