Suppr超能文献

使用1型糖尿病间歇性扫描式动态血糖监测风险计算器预测无低血糖的血糖达标时间

Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes.

作者信息

Sebastian-Valles Fernando, Arranz Martin Jose Alfonso, Martínez-Alfonso Julia, Jiménez-Díaz Jessica, Hernando Alday Iñigo, Navas-Moreno Victor, Armenta Joya Teresa, Del Fandiño García Maria Del Mar, Román Gómez Gisela Liz, Garai Hierro Jon, Lander Lobariñas Luis Eduardo, González-Ávila Carmen, de Martinez de Icaya Purificación, Martínez-Vizcaíno Vicente, Sampedro-Nuñez Miguel Antonio, Marazuela Mónica

机构信息

Universidad Autónoma de Madrid, Department of Endocrinology and Nutrition, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria de La Princesa, Madrid, Spain.

Department of Family and Community Medicine, Hospital La Princesa/Centro de Salud Daroca, Madrid, Spain.

出版信息

Endocrinol Diabetes Metab. 2025 Jan;8(1):e70020. doi: 10.1002/edm2.70020.

Abstract

PURPOSE

To investigate the impact of clinical and socio-economic factors on glycaemic control and construct statistical models to predict optimal glycaemic control (OGC) after implementing intermittently scanned continuous glucose monitoring (isCGM) systems.

METHODS

This retrospective study included 1072 type 1 diabetes patients (49.0% female) from three centres using isCGM systems. Clinical data and net income from the census tract were collected for each individual. OGC was defined as time in range > 70%, with time below 70 mg/dL < 4%. The sample was randomly split in two equal parts. Logistic regression models to predict OGC were developed in one of the samples, and the best model was selected using the Akaike information criterion and adjusted for Pearson's and Hosmer-Lemeshow's statistics. Model reliability was assessed via external validation in the second sample and internal validation using bootstrap resampling.

RESULTS

Out of 2314 models explored, the most effective predictor model included annual net income per person, sex, age, diabetes duration, pre-isCGM HbA1c, insulin dose/kg, and the interaction between sex and HbA1c. When applied to the validation cohort, this model demonstrated 72.6% specificity, 67.3% sensitivity, and an area under the curve (AUC) of 0.736. The AUC through bootstrap resampling was 0.756. Overall, the model's validity in the external cohort was 80.4%.

CONCLUSIONS

Clinical and socio-economic factors significantly influence OGC in type 1 diabetes. The application of statistical models offers a reliable means of predicting the likelihood of achieving OGC following isCGM system implementation.

摘要

目的

探讨临床和社会经济因素对血糖控制的影响,并构建统计模型,以预测在实施间歇性扫描式连续血糖监测(isCGM)系统后实现最佳血糖控制(OGC)的情况。

方法

这项回顾性研究纳入了来自三个中心的1072例使用isCGM系统的1型糖尿病患者(49.0%为女性)。收集了每个个体的临床数据和来自普查区的净收入。OGC定义为血糖在目标范围内的时间>70%,血糖低于70mg/dL的时间<4%。样本被随机分成两个相等的部分。在其中一个样本中建立预测OGC的逻辑回归模型,并使用赤池信息准则选择最佳模型,并根据Pearson统计量和Hosmer-Lemeshow统计量进行调整。通过在第二个样本中进行外部验证和使用自助重抽样进行内部验证来评估模型的可靠性。

结果

在探索的2314个模型中,最有效的预测模型包括人均年度净收入、性别、年龄、糖尿病病程、isCGM前的糖化血红蛋白(HbA1c)、胰岛素剂量/千克,以及性别与HbA1c之间的相互作用。当应用于验证队列时,该模型的特异性为72.6%,敏感性为67.3%,曲线下面积(AUC)为0.736。通过自助重抽样得到的AUC为0.756。总体而言,该模型在外部队列中的有效性为80.4%。

结论

临床和社会经济因素对1型糖尿病患者的OGC有显著影响。统计模型的应用为预测在实施isCGM系统后实现OGC的可能性提供了一种可靠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/11667215/bdc938c41738/EDM2-8-e70020-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验