Huang Jingyan, Xu Chong, Wang Jia, Fan Zengjie, Xu Lei, He Yu, Zhang Xingyu, Ding Bing, Zhang Xiaogang
Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
J Colloid Interface Sci. 2025 Apr;683(Pt 1):984-993. doi: 10.1016/j.jcis.2024.12.103. Epub 2024 Dec 16.
Compared to liquid electrolytes, gel polymer electrolytes (GPEs) offer enhanced safety and represent an up-and-coming option for high-energy-density lithium metal batteries (LMBs). However, several challenges hindered the practical application of GPEs for LMBs, such as low ionic conductivity at room temperature, decomposition at high voltage, and poor interfacial compatibility with lithium anode. In this study, a non-flammable fluorinated GPE was synthesized using 2,2,2-trifluoroethyl acrylate (TFEA) and ethoxylated trimethylolpropane triacrylate (ETPTA) as precursor materials, with succinonitrile (SN) incorporated as a plasticizer and a dual-salt system of lithium bis(trifluoro-methane) sulfonimide and lithium difluoroxalate borate. Notably, the as-prepared GPE exhibits a high ionic conductivity of 1.33 mS cm at 30 °C, an electrochemical stability window of 5.15 V (vs. Li/Li), and excellent interfacial compatibility with the high-nickel LiNiCoMnO (NCM-93) cathode and lithium metal anode. Consequently, the Li|NCM-93 cells demonstrated outstanding cycling stability at a cutoff voltage of 4.3 V at room temperature as well as exceptional safety performances under high-temperature conditions and intense radiation conditions. Furthermore, the fluorinated GPE effectively suppresses the gas generation from high-nickel cathode materials and inhibits the growth of lithium dendrites on the anode. This work offers a novel avenue for developing safe and high-voltage solid-state LMBs for working in harsh environments.
与液体电解质相比,凝胶聚合物电解质(GPEs)具有更高的安全性,是高能量密度锂金属电池(LMBs)的一个新兴选择。然而,几个挑战阻碍了GPEs在LMBs中的实际应用,例如室温下离子电导率低、在高电压下分解以及与锂负极的界面相容性差。在本研究中,使用丙烯酸2,2,2-三氟乙酯(TFEA)和乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)作为前驱体材料合成了一种不可燃的氟化GPE,其中加入丁二腈(SN)作为增塑剂以及双盐体系双(三氟甲烷)磺酰亚胺锂和二氟草酸硼酸锂。值得注意的是,所制备的GPE在30°C时表现出1.33 mS cm的高离子电导率、5.15 V(相对于Li/Li)的电化学稳定窗口以及与高镍LiNiCoMnO(NCM-93)正极和锂金属负极优异的界面相容性。因此,Li|NCM-93电池在室温下4.3 V的截止电压下表现出出色的循环稳定性,以及在高温条件和强辐射条件下优异的安全性能。此外,氟化GPE有效地抑制了高镍正极材料产生气体,并抑制了负极上锂枝晶的生长。这项工作为开发在恶劣环境下工作的安全且高压的固态LMBs提供了一条新途径。