Suppr超能文献

可视化英国神经科学中心的患者路径并识别数据存储库:探索性研究

Visualizing Patient Pathways and Identifying Data Repositories in a UK Neurosciences Center: Exploratory Study.

作者信息

Knight Jo, Chandrabalan Vishnu Vardhan, Emsley Hedley C A

机构信息

Lancaster Medical School, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom, 44 01524 594547.

Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom.

出版信息

JMIR Med Inform. 2024 Dec 24;12:e60017. doi: 10.2196/60017.

Abstract

BACKGROUND

Health and clinical activity data are a vital resource for research, improving patient care and service efficiency. Health care data are inherently complex, and their acquisition, storage, retrieval, and subsequent analysis require a thorough understanding of the clinical pathways underpinning such data. Better use of health care data could lead to improvements in patient care and service delivery. However, this depends on the identification of relevant datasets.

OBJECTIVE

We aimed to demonstrate the application of business process modeling notation (BPMN) to represent clinical pathways at a UK neurosciences center and map the clinical activity to corresponding data flows into electronic health records and other nonstandard data repositories.

METHODS

We used BPMN to map and visualize a patient journey and the subsequent movement and storage of patient data. After identifying several datasets that were being held outside of the standard applications, we collected information about these datasets using a questionnaire.

RESULTS

We identified 13 standard applications where neurology clinical activity was captured as part of the patient's electronic health record including applications and databases for managing referrals, outpatient activity, laboratory data, imaging data, and clinic letters. We also identified 22 distinct datasets not within standard applications that were created and managed within the neurosciences department, either by individuals or teams. These were being used to deliver direct patient care and included datasets for tracking patient blood results, recording home visits, and tracking triage status.

CONCLUSIONS

Mapping patient data flows and repositories allowed us to identify areas wherein the current electronic health record does not fulfill the needs of day-to-day patient care. Data that are being stored outside of standard applications represent a potential duplication in the effort and risks being overlooked. Future work should identify unmet data needs to inform correct data capture and centralization within appropriate data architectures.

摘要

背景

健康与临床活动数据是研究、改善患者护理及服务效率的重要资源。医疗保健数据本质上很复杂,其采集、存储、检索及后续分析需要对支撑此类数据的临床路径有透彻理解。更好地利用医疗保健数据可改善患者护理及服务提供。然而,这取决于相关数据集的识别。

目的

我们旨在展示业务流程建模符号(BPMN)在英国神经科学中心用于表示临床路径的应用,并将临床活动映射到流入电子健康记录及其他非标准数据存储库的相应数据流。

方法

我们使用BPMN来映射和可视化患者就医过程以及患者数据随后的移动和存储。在识别出几个保存在标准应用程序之外的数据集后,我们通过问卷调查收集了有关这些数据集的信息。

结果

我们识别出13个标准应用程序,其中神经科临床活动作为患者电子健康记录的一部分被捕获,包括用于管理转诊、门诊活动、实验室数据、影像数据和临床信件的应用程序及数据库。我们还识别出22个不属于标准应用程序的不同数据集,这些数据集由神经科学部门内的个人或团队创建和管理。它们被用于提供直接的患者护理,包括用于跟踪患者血液检查结果、记录家访和跟踪分诊状态的数据集。

结论

映射患者数据流和存储库使我们能够识别当前电子健康记录无法满足日常患者护理需求的领域。保存在标准应用程序之外的数据代表了工作的潜在重复以及被忽视的风险。未来的工作应识别未满足的数据需求,以便在适当的数据架构内为正确的数据捕获和集中化提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2257/11707554/9a34f53a5204/medinform-v12-e60017-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验