Wei Mengke, Amann Andreas, Burylko Oleksandr, Han Xiujing, Yanchuk Serhiy, Kurths Jürgen
School of Mathematical Science, Yangzhou University, Yangzhou 225002, China.
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam 14473, Germany.
Chaos. 2024 Dec 1;34(12). doi: 10.1063/5.0226257.
Adaptive dynamical networks are ubiquitous in real-world systems. This paper aims to explore the synchronization dynamics in networks of adaptive oscillators based on a paradigmatic system of adaptively coupled phase oscillators. Our numerical observations reveal the emergence of synchronization cluster bursting, characterized by periodic transitions between cluster synchronization and global synchronization. By investigating a reduced model, the mechanisms underlying synchronization cluster bursting are clarified. We show that a minimal model exhibiting this phenomenon can be reduced to a phase oscillator with complex-valued adaptation. Furthermore, the adaptivity of the system leads to the appearance of additional symmetries, and thus, to the coexistence of stable bursting solutions with very different Kuramoto order parameters.
自适应动力网络在现实世界系统中无处不在。本文旨在基于自适应耦合相位振荡器的典型系统,探索自适应振荡器网络中的同步动力学。我们的数值观测揭示了同步簇爆发的出现,其特征是簇同步和全局同步之间的周期性转变。通过研究一个简化模型,阐明了同步簇爆发背后的机制。我们表明,表现出这种现象的最小模型可以简化为具有复值自适应的相位振荡器。此外,系统的适应性导致了额外对称性的出现,从而导致具有非常不同Kuramoto序参量的稳定爆发解共存。