Ke Jia, Ji Yujin, Liu Da, Chen Jinxin, Wang Yue, Li Youyong, Hu Zhiwei, Huang Wei-Hsiang, Shao Qi, Lu Jianmei
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):13-21. doi: 10.1021/acsami.4c19301. Epub 2024 Dec 24.
Ruthenium dioxide (RuO) is one of the promising catalysts for the acidic oxygen evolution reaction (OER). However, designing RuO catalysts with good activity and stability remains a significant challenge. In this work, we propose the manganese (Mn)-doped RuO assembly as a catalyst for the OER with improved activity and stability. Consequently, the optimized 7% Mn-RuO exhibits exceptional OER activity in 0.5 M HSO, delivering a low overpotential of 195 mV to achieve a current density of 10 mA cm. Furthermore, it displays the highest mass activity among all the tested catalysts, reaching 587.9 A g at 1.5 V versus the reversible hydrogen electrode (vs RHE), which is 7.8 and 139.8 times higher than those of undoped RuO and commercial RuO, respectively. Moreover, 7% Mn-RuO demonstrates remarkable stability over a continuous operation to 100 h (at 10 mA cm) without significant performance attenuation. Additionally, theoretical calculations indicate that Mn doping weakens the adsorption of the OER intermediates and modifies the potential-determining step (PDS) of the OER, thereby reducing the OER overpotential. Consequently, strategies involving Mn doping can effectively enhance the overall kinetics of the OER. This work offers a promising approach for the design of efficient water electrolysis catalysts.
二氧化钌(RuO)是用于酸性析氧反应(OER)的有前景的催化剂之一。然而,设计具有良好活性和稳定性的RuO催化剂仍然是一项重大挑战。在这项工作中,我们提出锰(Mn)掺杂的RuO组装体作为一种具有改进活性和稳定性的OER催化剂。因此,优化后的7% Mn-RuO在0.5 M HSO中表现出优异的OER活性,在电流密度为10 mA cm时具有195 mV的低过电位。此外,它在所有测试催化剂中显示出最高的质量活性,在相对于可逆氢电极(vs RHE)为1.5 V时达到587.9 A g,分别比未掺杂的RuO和商业RuO高7.8倍和139.8倍。此外,7% Mn-RuO在连续运行100 h(在10 mA cm)时表现出显著的稳定性,性能没有明显衰减。此外,理论计算表明,Mn掺杂减弱了OER中间体的吸附并改变了OER的决速步骤(PDS),从而降低了OER过电位。因此,涉及Mn掺杂的策略可以有效地提高OER的整体动力学。这项工作为设计高效水电解催化剂提供了一种有前景的方法。