Koya Alemayehu Nana, Li Longnan, Li Wei
Opt Lett. 2025 Jan 1;50(1):229-232. doi: 10.1364/OL.547590.
In this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime. Moreover, quantitative analysis of optical near-fields reveals that CTP modes oscillate completely out-of-phase with the particle plasmon and dimer plasmon modes. The dephasing time, near-field decay rate and charge transfer time of the CTP mode are found to be on a few femtosecond timescales, implying that conductively connected plasmonic nanoparticles hold great promise as channels for ultrafast transfer of information in all-optical computing and optoelectronic devices.
在本信函中,我们基于洛伦兹函数和谐振子模型进行了一项理论研究,以探索电荷转移等离子体激元(CTP)共振的时间动态特性。通过拟合散射曲线和近场振荡,我们确定了导电连接的金纳米盘二聚体中CTP模式的退相时间。我们表明,与著名的粒子等离子体激元和二聚体等离子体激元模式相比,CTP模式具有较窄的光谱宽度和较长的寿命。此外,对光学近场的定量分析表明,CTP模式与粒子等离子体激元和二聚体等离子体激元模式完全异相振荡。发现CTP模式的退相时间、近场衰减率和电荷转移时间处于几个飞秒的时间尺度,这意味着导电连接的等离子体纳米粒子作为全光计算和光电器件中超快信息传输的通道具有巨大潜力。