Suppr超能文献

子宫内膜异位症血浆蛋白生物标志物的鉴定及疾病诊断统计模型的建立。

Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis.

作者信息

Schoeman E M, Bringans S, Peters K, Casey T, Andronis C, Chen L, Duong M, Girling J E, Healey M, Boughton B A, Ismail D, Ito J, Laming C, Lim H, Mead M, Raju M, Tan P, Lipscombe R, Holdsworth-Carson S, Rogers P A W

机构信息

Proteomics International, Nedlands, WA, Australia.

Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia.

出版信息

Hum Reprod. 2025 Feb 1;40(2):270-279. doi: 10.1093/humrep/deae278.

Abstract

STUDY QUESTION

Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis?

SUMMARY ANSWER

A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis.

WHAT IS KNOWN ALREADY

Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount.

STUDY DESIGN, SIZE, DURATION: This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis.

PARTICIPANTS/MATERIALS, SETTING, METHODS: A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls.

MAIN RESULTS AND THE ROLE OF CHANCE

A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994-1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988-0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676-0.783).

LIMITATIONS, REASONS FOR CAUTION: The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings.

WIDER IMPLICATIONS OF THE FINDINGS

In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis.

STUDY FUNDING/COMPETING INTEREST(S): Subject recruitment at The Royal Women's Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest.

TRIAL REGISTRATION NUMBER

N/A.

摘要

研究问题

能否识别出一组血浆蛋白生物标志物来准确、特异性地诊断子宫内膜异位症?

简要回答

已识别并验证了一组由10种血浆蛋白生物标志物组成的新型标志物,其对子宫内膜异位症的诊断具有很强的预测准确性。

已知信息

子宫内膜异位症给患者及其医生带来了复杂的医学挑战,然而目前诊断该病平均需要7年时间,且通常需要进行侵入性腹腔镜检查。因此,迫切需要一种简单、准确的非侵入性诊断工具。

研究设计、规模、持续时间:本研究比较了两个独立临床群体中的805名参与者,所有子宫内膜异位症和症状对照样本的状况均通过腹腔镜检查得以确认。采用蛋白质组学工作流程来识别和验证用于诊断子宫内膜异位症的血浆蛋白生物标志物。

参与者/材料、设置、方法:在开发靶向质谱分析方法并用于比较464例子宫内膜异位症患者、153名普通人群对照和132名症状对照的血浆样本之前,进行了一项蛋白质组学发现实验。开发了三个多变量模型:模型1(逻辑回归)用于子宫内膜异位症患者与普通人群对照的比较;模型2(逻辑回归)用于rASRM II至IV期(轻度至重度)子宫内膜异位症患者与症状对照的比较;模型3(随机森林)用于IV期(重度)子宫内膜异位症患者与症状对照的比较。

主要结果及偶然性的作用

在三个模型中识别出一组由10种蛋白质生物标志物组成的标志物,它们为临床因素增添了显著价值。模型3(重度子宫内膜异位症与症状对照)表现最佳,受试者工作特征曲线下面积(AUC)为0.997(95%CI 0.994 - 1.000)。当将该模型应用于剩余数据集时,也能够准确区分症状对照与早期子宫内膜异位症(I至III期子宫内膜异位症的AUC≥0.85)。模型1也表现出很强的预测性能,AUC为0.993(95%CI 0.988 - 0.998),而模型2的AUC为0.729(95%CI 0.676 - 0.783)。

局限性、谨慎原因:研究参与者大多为欧洲种族,结果可能因对照中未诊断出的子宫内膜异位症而存在偏差。需要进一步分析以使研究结果能够推广到其他人群和环境。

研究结果的更广泛影响

这些血浆蛋白生物标志物及由此产生的诊断模型共同代表了一种用于子宫内膜异位症非侵入性诊断的潜在新工具。

研究资金/利益冲突:墨尔本皇家妇女医院的受试者招募部分得到了澳大利亚国家卫生与医学研究委员会(NHMRC)项目资助GNT1105321和GNT1026033以及澳大利亚医学研究未来基金资助MRF1199715(P.A.W.R.、S.H.-C.和M.H.)的支持。蛋白质组学国际公司已提交与本手稿中描述的子宫内膜异位症生物标志物相关的专利WO 2021/184060 A1;S.B.、R.L.和T.C.声明对该专利感兴趣。J.I.、S.B.、C.L.、D.I.、H.L.、K.P.、M.D.、M.M.、M.R.、P.T.、R.L.和T.C.是蛋白质组学国际公司的股东。除此之外,作者不存在利益冲突。

试验注册号

无。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/11788222/ff0df10e9025/deae278f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验