Yang Jinyong, Li Shenglan, Zhou Xiangxue, Du Chongxuan, Fang Ju, Li Xing, Zhao Jun, Ding Fan, Wang Yue, Zhang Qian, Wang Zhengrui, Liu Jianping, Dong Gangqiang, Zhang Jianhua, Xu Feiyun, Xu Weifeng
Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Amway (China) Botanical R&D Centre, Wuxi 214145, China.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiae676.
White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear. Here, we investigated the roles of SQR9 in cluster root formation under low phosphorus conditions using a microbial mutant and virus-induced gene silencing (VIGS) in white lupin. SQR9 substantially enhanced cluster root formation under low phosphorus conditions. The ysnE gene encodes an auxin biosynthesis enzyme in SQR9 and was associated with cluster root formation, as ysnE-defective SQR9 did not trigger cluster root formation. SQR9 inoculation induced the expression of PIN-formed2 (LaPIN2, encoding an auxin transporter) and YUCCA4 (LaYUC4, encoding an auxin biosynthesis enzyme) in white lupin roots. VIGS-mediated knockdown of LaPIN2 and LaYUC4 prevented wild-type SQR9-induced cluster root formation in white lupin. Finally, white lupin LaYUC4-derived auxin and SQR9-derived auxin pools were both transported by LaPIN2, promoting cluster root formation under low phosphorus conditions. Taken together, we propose that B. amyloliquefaciens promotes cluster root formation in white lupin under low phosphorus conditions by stimulating auxin biosynthesis and transport. Our results provide insights into the interplay between bacteria and root auxin in crop phosphorus use efficiency.
白羽扇豆(Lupinus albus L.)在缺磷条件下会产生簇生根以获取更多磷。解淀粉芽孢杆菌SQR9有助于植物生长,但它是否以及如何促进白羽扇豆簇生根的形成仍不清楚。在这里,我们使用微生物突变体和病毒诱导基因沉默(VIGS)技术,研究了SQR9在低磷条件下对白羽扇豆簇生根形成的作用。SQR9在低磷条件下显著增强了簇生根的形成。ysnE基因在SQR9中编码一种生长素生物合成酶,并且与簇生根的形成有关,因为ysnE缺陷型SQR9不会触发簇生根的形成。接种SQR9诱导了白羽扇豆根中PIN-formed2(LaPIN2,编码一种生长素转运蛋白)和YUCCA4(LaYUC4,编码一种生长素生物合成酶)的表达。VIGS介导的LaPIN2和LaYUC4基因敲低阻止了野生型SQR9诱导的白羽扇豆簇生根形成。最后,白羽扇豆LaYUC4衍生的生长素和SQR9衍生的生长素库均由LaPIN2转运,在低磷条件下促进簇生根的形成。综上所述,我们认为解淀粉芽孢杆菌通过刺激生长素的生物合成和转运,在低磷条件下促进白羽扇豆簇生根的形成。我们的研究结果为细菌与根生长素在作物磷利用效率方面的相互作用提供了见解。