Suppr超能文献

人工智能导向的制剂策略设计开启了合理的药物研发。

AI-directed formulation strategy design initiates rational drug development.

作者信息

Wang Nannan, Dong Jie, Ouyang Defang

机构信息

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.

出版信息

J Control Release. 2025 Feb 10;378:619-636. doi: 10.1016/j.jconrel.2024.12.043. Epub 2024 Dec 26.

Abstract

Rational drug development would be impossible without selecting the appropriate formulation route. However, pharmaceutical scientists often rely on limited personal experiences to perform trial-and-error tests on diverse formulation strategies. Such an inefficient screening manner not only wastes research investments but also threatens the safety of clinical volunteers and patients. A design-oriented paradigm for formulation strategy determination is urgently needed to initiate rational drug development. Herein, we introduce FormulationDT, the first data-driven and knowledge-guided artificial intelligence (AI) platform for rational formulation strategy design. Learning from approved drug formulations, FormulationDT devised a comprehensive formulation strategy design system containing 12 decisions for both oral and injectable administration. Utilizing PU-Decide, our specialized partially supervised learning framework designed for positive-unlabeled (PU) scenarios, FormulationDT developed precise and interpretable classification models for each decision, achieving area under the receiver operating characteristic curve (ROC_AUC) scores ranging from 0.78 to 0.98, with an average above 0.90. Incorporating extensive domain knowledge, FormulationDT is now accessible through a user-friendly web platform (http://formulationdt.computpharm.org/). Moreover, FormulationDT demonstrates its value by showcasing its application in proteolysis targeting chimeras (PROTACs) and recent drug approvals. Overall, this study created the first approved drug formulation dataset and tailored the PU-Decide framework to develop a high-performance, interpretable, and user-friendly AI formulation strategy design platform, which holds promise for driving risk reduction and efficiency gains across the life cycle of drug discovery and development.

摘要

如果不选择合适的制剂途径,合理的药物开发将无法实现。然而,药物科学家往往依靠有限的个人经验对各种制剂策略进行反复试验。这种低效的筛选方式不仅浪费研究投资,还威胁到临床志愿者和患者的安全。迫切需要一种以设计为导向的制剂策略确定范式来启动合理的药物开发。在此,我们介绍FormulationDT,这是第一个用于合理制剂策略设计的数据驱动和知识引导的人工智能(AI)平台。FormulationDT从已批准的药物制剂中学习,设计了一个全面的制剂策略设计系统,包含针对口服和注射给药的12个决策。利用我们专门为正例未标记(PU)场景设计的部分监督学习框架PU-Decide,FormulationDT为每个决策开发了精确且可解释的分类模型,其受试者操作特征曲线下面积(ROC_AUC)得分在0.78至0.98之间,平均得分超过0.90。结合广泛的领域知识,现在可以通过一个用户友好的网络平台(http://formulationdt.computpharm.org/)访问FormulationDT。此外,FormulationDT通过展示其在蛋白水解靶向嵌合体(PROTAC)和近期药物批准中的应用来证明其价值。总体而言,本研究创建了第一个已批准药物制剂数据集,并定制了PU-Decide框架,以开发一个高性能、可解释且用户友好的人工智能制剂策略设计平台,该平台有望在药物发现和开发的整个生命周期中降低风险并提高效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验