Lyukmanova Ekaterina N, Pichkur Evgeny B, Nolde Dmitry E, Kocharovskaya Milita V, Manuvera Valentin A, Shirokov Dmitriy A, Kharlampieva Daria D, Grafskaia Ekaterina N, Svetlova Julia I, Lazarev Vassili N, Varizhuk Anna M, Kirpichnikov Mikhail P, Shenkarev Zakhar O
Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Commun Biol. 2024 Dec 24;7(1):1698. doi: 10.1038/s42003-024-07422-9.
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
研究抗体识别不同病毒株的机制对于开发治疗新冠病毒病和其他感染的新药及疫苗至关重要。在此,我们报告了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)Delta三聚体S蛋白与REGN10987中和抗体重组类似物的Fab片段复合物的2.5埃冷冻电镜结构。S蛋白呈现“两个受体结合域(RBD)向下和一个RBD向上”的构象。Fab在两种构象下均与RBD相互作用,阻断血管紧张素转换酶2的识别。三维变异性分析揭示了RBD/Fab区域的高流动性。通过微尺度热泳、分子动力学模拟以及使用伞形采样和一维平均力势的自由能变化(ΔG)计算,分析了REGN10987与武汉株、Delta株、奥密克戎BA.1株以及RBD突变变体的相互作用。分子动力学轨迹的变异性导致计算出的ΔG值有很大离散度,但玻尔兹曼加权法与实验结果具有可接受的相关性。发现REGN10987对奥密克戎变体的逃逸是由于位于RBD/Fab结合界面的N440K和G446S突变的累加效应以及Q498R突变的较小影响。我们的研究解释了迄今为止已知的SARS-CoV-2 RBD突变对REGN10987识别的影响,并强调了RBD/Fab复合物静态结构之外动力学数据的重要性。