Habib Shazia, Khan Zeeshan, Boulaaras Salah, Rahman Mati Ur, Islam Saeed, Guefaifia Rafik
Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
Department of Natural Sciences and Humanities, University of Engineering and Technology, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
Sci Rep. 2024 Dec 24;14(1):30628. doi: 10.1038/s41598-024-82017-2.
Fins and radial fins are versatile engineering components that significantly enhance heat transfer and thermal management in diverse applications, hence improving efficiency and performance across several sectors. This study examines the temperature distribution in a radial porous fin under steady-state conditions, evaluating the impact of several significant parameters by utilizing a novel methodology. We specifically introduce an inclined magnetic field and examine the effects of convection and internal heat generation on the thermal behavior of the fin. We employ the Levenberg Marquard Backpropagation Neural Network Algorithm. We initially obtain the data with the bvp4c solver. This novel methodology demonstrates commendable performance, by its mean squared error and its gradient which are mentioned in their figures along with absolute error. Furthermore, increase in the parameters of heat generation and ambient temperature, results in a tendency for the temperature profile to rise. In contrast, as convection-conduction parameter, porosity parameter and Hartmann number increase, the temperature profile decreases. This innovative approach offers a sophisticated solution for complex thermal models, improved prediction accuracy for nonlinear heat transfer, parameter-driven optimization in porous media heat transfer, and increased model efficiency for real-time thermal management.
肋片和径向肋片是用途广泛的工程部件,能显著增强各种应用中的传热和热管理,从而提高多个领域的效率和性能。本研究考察了稳态条件下径向多孔肋片中的温度分布,采用一种新方法评估了几个重要参数的影响。我们特别引入了倾斜磁场,并研究了对流和内热生成对肋片热行为的影响。我们采用了Levenberg Marquard反向传播神经网络算法。我们最初使用bvp4c求解器获取数据。这种新方法通过其均方误差、梯度以及图中提到的绝对误差,展现出了值得称赞的性能。此外,内热生成参数和环境温度的增加会导致温度分布有上升趋势。相反,随着对流 - 传导参数、孔隙率参数和哈特曼数的增加,温度分布会降低。这种创新方法为复杂热模型提供了一种精密的解决方案,提高了非线性传热的预测精度,实现了多孔介质传热中的参数驱动优化,并提高了实时热管理的模型效率。