Suppr超能文献

从电子健康记录的临床叙述中检测患者层面的免疫治疗相关不良事件(irAEs):一种高灵敏度人工智能模型。

Detection of Patient-Level Immunotherapy-Related Adverse Events (irAEs) from Clinical Narratives of Electronic Health Records: A High-Sensitivity Artificial Intelligence Model.

作者信息

Zitu Md Muntasir, Gatti-Mays Margaret E, Johnson Kai C, Zhang Shijun, Shendre Aditi, Elsaid Mohamed I, Li Lang

机构信息

Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.

Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.

出版信息

Pragmat Obs Res. 2024 Dec 20;15:243-252. doi: 10.2147/POR.S468253. eCollection 2024.

Abstract

PURPOSE

We developed an artificial intelligence (AI) model to detect immunotherapy -related adverse events (irAEs) from clinical narratives of electronic health records (EHRs) at the patient level.

PATIENTS AND METHODS

Training data, used for internal validation of the AI model, comprised 1230 clinical notes from 30 patients at The Ohio State University James Cancer Hospital-20 patients who experienced irAEs and ten who did not. 3256 clinical notes of 50 patients were utilized for external validation of the AI model.

RESULTS

Use of a leave-one-out cross-validation technique for internal validation among those 30 patients yielded accurate identification of 19 of 20 with irAEs (positive patients; 95% sensitivity) and correct dissociation of eight of ten without (negative patients; 80% specificity). External validation on 3256 clinical notes of 50 patients yielded high sensitivity (95%) but moderate specificity (64%). If we improve the model's specificity to 100%, it could eliminate the need to manually review 2500 of those 3256 clinical notes (77%).

CONCLUSION

Combined use of this AI model with the manual review of clinical notes will improve both sensitivity and specificity in the detection of irAEs, decreasing workload and costs and facilitating the development of improved immunotherapies.

摘要

目的

我们开发了一种人工智能(AI)模型,用于在患者层面从电子健康记录(EHR)的临床叙述中检测免疫治疗相关不良事件(irAE)。

患者与方法

用于AI模型内部验证的训练数据包括俄亥俄州立大学詹姆斯癌症医院30例患者的1230份临床记录——20例发生irAE的患者和10例未发生的患者。50例患者的3256份临床记录用于AI模型的外部验证。

结果

对这30例患者采用留一法交叉验证技术进行内部验证,20例发生irAE的患者中有19例被准确识别(阳性患者;95%敏感性),10例未发生的患者中有8例被正确区分(阴性患者;80%特异性)。对50例患者的3256份临床记录进行外部验证,敏感性较高(95%),但特异性中等(64%)。如果将模型的特异性提高到100%,则无需人工审查这3256份临床记录中的2500份(77%)。

结论

将此AI模型与临床记录的人工审查相结合,将提高检测irAE的敏感性和特异性,减少工作量和成本,并促进改进免疫疗法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5268/11668329/d99ca2ddb544/POR-15-243-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验