Suppr超能文献

用于自杀预测的人工智能和机器学习技术:整合饮食模式与环境污染物

Artificial intelligence and machine learning techniques for suicide prediction: Integrating dietary patterns and environmental contaminants.

作者信息

Al-Remawi Mayyas, Ali Agha Ahmed S A, Al-Akayleh Faisal, Aburub Faisal, Abdel-Rahem Rami A

机构信息

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.

School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan.

出版信息

Heliyon. 2024 Dec 4;10(24):e40925. doi: 10.1016/j.heliyon.2024.e40925. eCollection 2024 Dec 30.

Abstract

BACKGROUND

Suicide remains a leading cause of death globally, with nearly 800,000 deaths annually, particularly among young adults in regions like Europe, Australia, and the Middle East, highlighting the urgent need for innovative intervention strategies beyond conventional methods.

OBJECTIVES

This review aims to explore the transformative role of artificial intelligence (AI) and machine learning (ML) in enhancing suicide risk prediction and developing effective prevention strategies, examining how these technologies integrate complex risk factors, including psychiatric, socio-economic, dietary, and environmental influences.

METHODS

A comprehensive review of literature from databases such as PubMed and Web of Science was conducted, focusing on studies that utilize AI and ML technologies. The review assessed the efficacy of various models, including Random Forest, neural networks, and others, in analyzing data from electronic health records, social media, and digital behaviors. Additionally, it evaluated a broad spectrum of dietary factors and their influence on suicidal behaviors, as well as the impact of environmental contaminants like lithium, arsenic, fluoride, mercury, and organophosphorus pesticides.

CONCLUSIONS

AI and ML are revolutionizing suicide prevention strategies, with models achieving nearly 90 % predictive accuracy by integrating diverse data sources. Our findings highlight the need for geographically and demographically tailored public health interventions and comprehensive AI models that address the multifactorial nature of suicide risk. However, the deployment of these technologies must address critical ethical and privacy concerns, ensuring compliance with regulations and the development of transparent, ethically guided AI systems. AI-driven tools, such as virtual therapists and chatbots, are essential for immediate support, particularly in underserved regions.

摘要

背景

自杀仍然是全球主要的死亡原因之一,每年有近80万人死亡,在欧洲、澳大利亚和中东等地区的年轻人中尤为突出,这凸显了迫切需要超越传统方法的创新干预策略。

目的

本综述旨在探讨人工智能(AI)和机器学习(ML)在提高自杀风险预测和制定有效预防策略方面的变革性作用,研究这些技术如何整合复杂的风险因素,包括精神、社会经济、饮食和环境影响。

方法

对来自PubMed和Web of Science等数据库的文献进行了全面综述,重点关注利用AI和ML技术的研究。该综述评估了各种模型,包括随机森林、神经网络等,在分析电子健康记录、社交媒体和数字行为数据方面的功效。此外,还评估了广泛的饮食因素及其对自杀行为的影响,以及锂、砷、氟、汞和有机磷农药等环境污染物的影响。

结论

AI和ML正在彻底改变自杀预防策略,通过整合多种数据源,模型的预测准确率接近90%。我们的研究结果强调了需要针对地理和人口特征制定公共卫生干预措施,以及开发能够解决自杀风险多因素性质的综合AI模型。然而,这些技术的应用必须解决关键的伦理和隐私问题,确保符合法规要求,并开发透明、符合伦理指导的AI系统。AI驱动的工具,如虚拟治疗师和聊天机器人,对于提供即时支持至关重要,特别是在服务不足的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/11667626/b2834f066d55/gr1.jpg

相似文献

1
Artificial intelligence and machine learning techniques for suicide prediction: Integrating dietary patterns and environmental contaminants.
Heliyon. 2024 Dec 4;10(24):e40925. doi: 10.1016/j.heliyon.2024.e40925. eCollection 2024 Dec 30.
3
Evaluating the ability of artificial intelligence to predict suicide: A systematic review of reviews.
J Affect Disord. 2025 Aug 1;382:525-539. doi: 10.1016/j.jad.2025.04.078. Epub 2025 Apr 22.
5
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.
J Med Internet Res. 2024 Nov 28;26:e54557. doi: 10.2196/54557.
6
Artificial intelligence in hospital infection prevention: an integrative review.
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
7
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
8
Artificial intelligence applied to the study of human milk and breastfeeding: a scoping review.
Int Breastfeed J. 2024 Dec 6;19(1):79. doi: 10.1186/s13006-024-00686-1.
9
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
10
Enhancing education for children with ASD: a review of evaluation and measurement in AI tool implementation.
Disabil Rehabil Assist Technol. 2025 Mar 13:1-18. doi: 10.1080/17483107.2025.2477678.

本文引用的文献

1
Association between exposure to organophosphorus pesticide and suicidal ideation among U.S. adults: A population-based study.
Ecotoxicol Environ Saf. 2024 Aug;281:116572. doi: 10.1016/j.ecoenv.2024.116572. Epub 2024 Jun 18.
2
Your robot therapist is not your therapist: understanding the role of AI-powered mental health chatbots.
Front Digit Health. 2023 Nov 8;5:1278186. doi: 10.3389/fdgth.2023.1278186. eCollection 2023.
3
Social Media Images Can Predict Suicide Risk Using Interpretable Large Language-Vision Models.
J Clin Psychiatry. 2023 Nov 29;85(1):23m14962. doi: 10.4088/JCP.23m14962.
4
Rapid screening for suicide risk: An algorithmic approach.
Suicide Life Threat Behav. 2024 Feb;54(1):83-94. doi: 10.1111/sltb.13020. Epub 2023 Nov 20.
9
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models.
Int J Environ Res Public Health. 2022 Oct 3;19(19):12635. doi: 10.3390/ijerph191912635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验