Suppr超能文献

预防与健康监测中的精准度:人工智能如何通过社交媒体内容分析改善健康问题的识别时机

Precision in Prevention and Health Surveillance: How Artificial Intelligence May Improve the Time of Identification of Health Concerns through Social Media Content Analysis.

作者信息

Staccini Pascal, Lau Annie Y S

机构信息

URE RETINES, Faculté de Médecine, Université Côte d'Azur, Nice, France.

Center for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Australia.

出版信息

Yearb Med Inform. 2024 Aug;33(1):158-165. doi: 10.1055/s-0044-1800736. Epub 2025 Apr 8.

Abstract

OBJECTIVE

To explore how artificial intelligence (AI) methodologies, particularly through the analysis of social media content, can enhance "precision in prevention and health surveillance" (2024 Yearbook topic). The focus is on leveraging advanced data analytics to improve the timeliness and accuracy of identifying emerging health concerns, thus enabling more proactive and effective health interventions.

METHODS

A comprehensive literature search strategy was conducted on PubMed, focusing on papers published in 2023 related to consumer health informatics, precision prevention, and the intersection with social media. The search aimed to identify studies that utilized AI and machine learning techniques to analyse social media data for health surveillance purposes. Bibliometric analyses were applied to the retrieved articles, and tools such as "Bibliometrix" were used to assess keyword frequencies, co-occurrence networks, and thematic maps. The studies were then independently reviewed and screened for relevance, with a final selection of 10 articles made based on their alignment with the 2024 Yearbook topic and their methodological innovation.

RESULTS

The analysis of 89 articles revealed several key themes and findings. Social media data offers a rich source of real-time insights into public health trends, and encompasses diverse demographic groups. AI methodologies, including machine learning, natural language processing (NLP), and deep learning, play a crucial role in extracting and analysing health-related information from social media content. The integration of AI in health surveillance can provide early warnings of potential health crises, as demonstrated by studies on topics such as suicide prevention, mental health, and the impact of social media use on e-cigarette consumption among youth. Ethical and privacy considerations are paramount, necessitating robust data anonymization and transparent data handling practices. Advanced AI techniques, such as transformer-based topic modelling and federated learning, enhance the precision and security of health surveillance systems. The document highlights several case studies that demonstrate the practical applications of AI in health surveillance, such as monitoring public discussions about delta-8 THC and assessing suicide-related tweets and their association with help-seeking behaviour in the US.

CONCLUSION

Integrating AI and social media content analysis in precision prevention and health surveillance has significant potential to improve public health outcomes. By leveraging real-time, comprehensive data from social media platforms, AI can enhance the timeliness and accuracy of identifying health concerns. Addressing ethical and privacy challenges is crucial to ensure responsible and effective implementation. The continuous advancement of AI technologies will play a critical role in safeguarding public health and responding to emerging health threats.

摘要

目的

探讨人工智能(AI)方法,特别是通过对社交媒体内容的分析,如何提升“预防与健康监测的精准度”(《2024年年鉴》主题)。重点在于利用先进的数据分析来提高识别新出现的健康问题的及时性和准确性,从而实现更积极有效的健康干预。

方法

在PubMed上开展了全面的文献检索策略,重点关注2023年发表的与消费者健康信息学、精准预防以及与社交媒体交叉领域相关的论文。该检索旨在识别利用人工智能和机器学习技术分析社交媒体数据以进行健康监测的研究。对检索到的文章进行文献计量分析,并使用“Bibliometrix”等工具评估关键词频率、共现网络和主题地图。然后对这些研究进行独立评审和相关性筛选,最终根据与《2024年年鉴》主题的契合度及其方法创新选出10篇文章。

结果

对89篇文章的分析揭示了几个关键主题和发现。社交媒体数据为洞察公共卫生趋势提供了丰富的实时信息来源,涵盖了不同的人口群体。人工智能方法,包括机器学习、自然语言处理(NLP)和深度学习,在从社交媒体内容中提取和分析与健康相关的信息方面发挥着关键作用。人工智能在健康监测中的整合可以提供潜在健康危机的早期预警,关于自杀预防、心理健康以及社交媒体使用对青少年电子烟消费影响等主题的研究证明了这一点。伦理和隐私考量至关重要,需要强大的数据匿名化和透明的数据处理实践。先进的人工智能技术,如基于Transformer的主题建模和联邦学习,提高了健康监测系统的精准度和安全性。该文献突出了几个案例研究,展示了人工智能在健康监测中的实际应用,如监测公众对δ-8四氢大麻酚的讨论以及评估与自杀相关的推文及其与美国求助行为的关联。

结论

将人工智能和社交媒体内容分析整合到精准预防和健康监测中,对于改善公共卫生结果具有巨大潜力。通过利用社交媒体平台的实时、全面数据,人工智能可以提高识别健康问题的及时性和准确性。应对伦理和隐私挑战对于确保负责任和有效的实施至关重要。人工智能技术的不断进步将在保障公众健康和应对新出现的健康威胁方面发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e6/12020627/b7441301da51/10-1055-s-0044-1800736-istaccini-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验