Suppr超能文献

快速筛查自杀风险:一种算法方法。

Rapid screening for suicide risk: An algorithmic approach.

机构信息

Department of Psychology, Western Carolina University, Cullowhee, North Carolina, USA.

出版信息

Suicide Life Threat Behav. 2024 Feb;54(1):83-94. doi: 10.1111/sltb.13020. Epub 2023 Nov 20.

Abstract

INTRODUCTION

In the United States, primary medical care settings are the first accessed resource for both medical and behavioral health care. Thus, there is a clear need for accurate and efficient behavioral health screening in this setting, including routine surveillance screening for suicide risk. The Multidimensional Behavioral Health Screen (MBHS), a broadband but very brief screening tool developed specifically for primary care, has been updated to include an algorithm that classifies suicide risk based on the interpersonal-psychological theory of suicide, and associated interview and decision framework. This study aims to evaluate the predictive accuracy of the new MBHS 2.0 suicide risk algorithm, with actual risk determined by clinical suicide risk interview.

METHOD

Data were collected as part of a larger study that, overall, included 551 college student participants. Of these, 309 completed the MBHS 2.0 and the clinical suicide risk interview, the two measures reported here. The final participant count was 299 following the removal of incomplete or invalid cases. Predicted suicide risk as determined by the MBHS 2.0 (Low, Mild, At least Moderate) was compared to actual risk as determined by clinical interview (Low, Moderate, Severe, Extreme).

RESULTS

Utilizing chi-square analyses, data show a significant association between the predicted suicide risk category based on the MBHS 2.0 algorithm and the actual risk category based on the semi-structured clinical interview. Furthermore, classification analyses suggest that primary care providers will be able to confidently assess the suicide risk level for the majority of their patients when using the MBHS.

CONCLUSION

Findings suggest that the MBHS 2.0 can be an accurate and efficient tool for use by primary care providers in classifying suicide risk. Future research will be useful to evaluate the utility of the suicide risk algorithm among primary care populations.

摘要

简介

在美国,初级医疗保健机构是医疗和行为健康护理的首选资源。因此,在这种环境下,非常需要准确且高效的行为健康筛查,包括对自杀风险的常规监测筛查。Multidimensional Behavioral Health Screen (MBHS) 是一种专门为初级保健开发的宽带但非常简短的筛查工具,已更新为包括一种基于自杀的人际心理理论的自杀风险分类算法,以及相关的访谈和决策框架。本研究旨在评估新的 MBHS 2.0 自杀风险算法的预测准确性,实际风险由临床自杀风险访谈确定。

方法

数据是作为一项更大的研究的一部分收集的,该研究总体上包括 551 名大学生参与者。其中,309 人完成了 MBHS 2.0 和临床自杀风险访谈,这是这里报告的两项措施。在剔除不完整或无效的病例后,最终的参与者人数为 299 人。由 MBHS 2.0(低、中、至少中)确定的预测自杀风险与由临床访谈(低、中、高、极高)确定的实际风险进行比较。

结果

使用卡方分析,数据显示基于 MBHS 2.0 算法的预测自杀风险类别与基于半结构化临床访谈的实际风险类别之间存在显著关联。此外,分类分析表明,初级保健提供者在使用 MBHS 时,将能够有信心评估他们大多数患者的自杀风险水平。

结论

研究结果表明,MBHS 2.0 可作为初级保健提供者用于分类自杀风险的准确且高效的工具。未来的研究将有助于评估自杀风险算法在初级保健人群中的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验