Lu Qi, Yang Chenyu, Xu Yang, Jiang Zhan, Ke Da, Meng Runze, Hu Sijiang, Chen Yuanzhen, Zhang Chaofeng, Yang Jianping, Zhou Tengfei
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
Guangxi Key Laboratory of Low Carbon Energy Material, Guangxi Normal University Guilin 541004 China.
Chem Sci. 2024 Dec 16;16(4):1791-1801. doi: 10.1039/d4sc07374f. eCollection 2025 Jan 22.
Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood. Proximate-supercritical water treatment is used to selectively cleave the β-O-4 bonds in lignin, with the extent of degradation controlled by adjusting the treatment environment's acidity. The enhanced thermal power of supercritical water molecules significantly accelerates the etching rate of lignin, increasing the porosity and permeability of the transformed carbon framework. Experimental results and multi-physics simulations show that the interconnected carbon-based pores and inner skeletal multilevel hierarchical structure facilitate rapid electron and ion transfer during battery operation and enhance electrolyte infiltration. Impressively, the as-obtained lithium metal anode exhibits long-term cycling stability for over 2000 hours at 0.5 mA cm with low voltage overpotential. The water-treated (WTP)-Li//LiCoO full cells maintain a high capacity retention rate of 93.3% and a specific capacity of 142 mA h g at 0.5C for 100 cycles.
锂金属电池(LMBs)有望实现高能量密度存储,但由于枝晶诱导的锂沉积、不可逆的电解质消耗和大体积变化而面临安全问题,这阻碍了它们的实际应用。为了解决这些问题,通过构建锂金属负极的主体结构来调控锂沉积已被认为是一种有效的方法。在此,我们报道了一种超临界水分子剪刀控制策略,以形成源自生物质木材的碳骨架。近临界水处理用于选择性地切断木质素中的β-O-4键,降解程度通过调节处理环境的酸度来控制。超临界水分子增强的热功率显著加速了木质素的蚀刻速率,增加了转化后的碳骨架的孔隙率和渗透率。实验结果和多物理场模拟表明,相互连接的碳基孔隙和内部骨架多级分层结构有助于电池运行过程中电子和离子的快速传输,并增强电解质的渗透。令人印象深刻的是,所制备的锂金属负极在0.5 mA cm下表现出超过2000小时的长期循环稳定性,且具有低电压过电位。经过水处理(WTP)的Li//LiCoO全电池在0.5C下循环100次后,保持了93.3%的高容量保持率和142 mA h g的比容量。