State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China.
University of Chinese Academy of Sciences , Beijing 100039, China.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11615-11625. doi: 10.1021/acsami.7b00478. Epub 2017 Mar 24.
Lithium metal batteries (LMBs) containing S, O, and fluoride cathodes are attracting increasing attention owing to their much higher energy density than that of Li-ion batteries. However, current limitation for the progress of LMBs mainly comes from the uncontrolled formation and growth of Li dendrites at the anode side. In order to suppress dendrite growth, exploring novel nanostructured electrolyte of high modulus without degradation of Li-electrolyte interface appears to be a potential solution. Here we propose a lightweight polymer-reinforced electrolyte based on graphitic carbon nitride (g-CN) mesoporous microspheres as electrolyte filler [bis(trifluoromethanesulfonimide) lithium salt/di(ethylene glycol) dimethyl ether mixed with g-CN, denoted as LiTFSI-DGM-CN] for the first time. This nanostructured electrolyte can effectively suppress lithium dendrite growth during cycling, benefiting from the high mechanical strength and nanosheet-built hierarchical structure of g-CN. The Li/Li symmetrical cell based on this slurrylike electrolyte enables long-term cycling of at least 120 cycles with a high capacity of 6 mA·h/cm and small plating/stripping overpotential of ∼100 mV at a high current density of 2 mA/cm. g-CN filling also enables a separator(Celgard)-free Li/FeS cell with at least 400 cycles. The 3D geometry of g-CN shows advantages on interfacial resistance and Li plating/stripping stability compared to its 2D geometry.
锂金属电池(LMBs)含有 S、O 和氟化物阴极,由于其比锂离子电池高得多的能量密度,因此越来越受到关注。然而,目前限制 LMBs 发展的主要因素是阳极侧不受控制的锂枝晶的形成和生长。为了抑制枝晶生长,探索具有高模量的新型纳米结构电解质而不降解锂电解质界面似乎是一种有潜力的解决方案。在这里,我们首次提出了一种基于石墨相氮化碳(g-CN)介孔微球的轻质聚合物增强电解质[双(三氟甲烷磺酰亚胺)锂盐/二乙二醇二甲醚混合 g-CN,记为 LiTFSI-DGM-CN]。这种纳米结构电解质可以在循环过程中有效抑制锂枝晶的生长,这得益于 g-CN 的高机械强度和纳米片构建的分级结构。基于这种浆状电解质的 Li/Li 对称电池能够在高电流密度为 2 mA/cm 时进行至少 120 次循环,具有 6 mA·h/cm 的高容量和约 100 mV 的小电镀/剥离过电势。g-CN 的填充还使无隔板 Celgard 的 Li/FeS 电池的循环寿命至少达到 400 次。与二维几何形状相比,g-CN 的 3D 几何形状在界面电阻和锂电镀/剥离稳定性方面具有优势。