De Haan David O, Hawkins Lelia Nahid, Pennington Elyse A, Welsh Hannah G, Rodriguez Alyssa A, Symons Michael A, Andretta Alyssa D, Rafla Michael A, Le Chen, De Haan Audrey C, Cui Tianqu, Surratt Jason D, Cazaunau Mathieu, Pangui Edouard, Doussin Jean-François
Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92117, United States.
Hixon Center for Climate and the Environment, Harvey Mudd College, 301 Platt Blvd, Claremont, California 91711, United States.
ACS Earth Space Chem. 2024 Dec 6;8(12):2574-2586. doi: 10.1021/acsearthspacechem.4c00237. eCollection 2024 Dec 19.
Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m g). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify CHO, CHO, CHNO, CHNO, and CHNO as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.
羟基丙酮(HA)是异戊二烯和其他有机前体的大气氧化产物,可形成棕碳(BrC)。测量得到的HA与硫酸铵、甲胺和甘氨酸在水相中的整体反应速率表明,这些反应无法与水相中的羟基自由基氧化竞争。在云室光氧化实验中,在存在相同含氮物种的情况下,无论是气态还是颗粒态的HA,BrC的形成都很少,在365nm处具有相似的质量吸收系数(<0.05 m g)。然而,观察到的气溶胶体积和气相物种浓度的快速变化表明,BrC的缺乏并非由于反应活性缓慢。基于过滤器的UHPLC/(+)ESI-HR-QTOFMS分析表明,二次有机气溶胶严重寡聚化,在所有情况下平均分子量约为400 amu。寡聚物平均包含3.9个HA、1.5个氨和1.6个其他小醛,按丰度降序排列包括乙醛、乙醇醛、乙二醛和甲基乙二醛。质子转移反应-飞行时间质谱(PTR-ToF-MS)证实了这些醛的产生。我们将CHO、CHO、CHNO、CHNO和CHNO确定为HA寡聚物的潜在示踪离子。我们假设,没有大量BrC产生的高效寡聚化是由于可忽略不计的氮杂环(如咪唑/吡嗪)形成。虽然HA光氧化不太可能是大气中BrC的重要来源,但它可能对水相二次有机气溶胶的形成有显著贡献。