文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Insights into Carvone: Fatty Acid Hydrophobic NADES for Alkane Solubilization.

作者信息

Aguilar Nuria, Benito Cristina, Martel-Martín Sonia, Gutiérrez Alberto, Rozas Sara, Marcos Pedro A, Bol-Arreba Alfredo, Atilhan Mert, Aparicio Santiago

机构信息

Department of Chemistry, University of Burgos, 09001 Burgos, Spain.

International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain.

出版信息

Energy Fuels. 2024 Dec 5;38(24):23633-23653. doi: 10.1021/acs.energyfuels.4c03623. eCollection 2024 Dec 19.


DOI:10.1021/acs.energyfuels.4c03623
PMID:39720702
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11664508/
Abstract

The urge to adopt cleaner technologies drives the search for novel and sustainable materials such as Hydrophobic Natural Deep Eutectic Solvents (HNADESs), a new class of green solvents characterized by their low toxicity, biodegradability, and tunable properties, aiming to be applied in various fields for handling non-polar substances. In this work, the solubilization of hydrocarbons in type V HNADESs (non-ionic organic molecules) formed by mixing carvone, a natural monoterpenoid, with organic acids (hexanoic to decanoic acids) is examined by applying both experimental and theoretical approaches. The synthesis and physicochemical characterization of different HNADESs allowed us to tailor their properties, aiming for optimal interactions with desired hydrocarbons. The solubilization of hydrocarbons in CAR:C10AC (1:1) HNADES is evaluated in terms of HNADES content, temperature, and the structure of the hydrocarbon itself (C6, C10, and C14 being the selected ones). To gain deeper insights into the underlying mechanisms of interactions between the solvents and the alkanes, a comprehensive multiscale computational study was carried out to analyze the nature of the interactions, the changes upon formation of HNADESs and hydrocarbon solubilization in the fluid's nanostructure, and the possible toxicological effects of the solvents. The findings hold the potential to significantly impact the realm of hydrocarbon exploration and utilization.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/79ec633931d8/ef4c03623_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/431f109cfd35/ef4c03623_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/2c715f9b433f/ef4c03623_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/988f1821aceb/ef4c03623_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/5d62bc090ba5/ef4c03623_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/4914b542df66/ef4c03623_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/99790b4d26bb/ef4c03623_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/6cfe652e9330/ef4c03623_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/81dfd2c0f40c/ef4c03623_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/294852073a7c/ef4c03623_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/e15e26c1f1ef/ef4c03623_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/5f40c02f62cb/ef4c03623_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/14205af9c8b3/ef4c03623_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/951ab22e520b/ef4c03623_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/37d74e8a7cea/ef4c03623_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/86a8849a8093/ef4c03623_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/f426fbaa0856/ef4c03623_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/56be29ca446a/ef4c03623_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/bc69d3580e19/ef4c03623_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/709bf4485dd2/ef4c03623_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/edbca758c03b/ef4c03623_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/139b94bb2233/ef4c03623_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/79ec633931d8/ef4c03623_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/431f109cfd35/ef4c03623_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/2c715f9b433f/ef4c03623_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/988f1821aceb/ef4c03623_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/5d62bc090ba5/ef4c03623_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/4914b542df66/ef4c03623_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/99790b4d26bb/ef4c03623_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/6cfe652e9330/ef4c03623_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/81dfd2c0f40c/ef4c03623_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/294852073a7c/ef4c03623_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/e15e26c1f1ef/ef4c03623_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/5f40c02f62cb/ef4c03623_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/14205af9c8b3/ef4c03623_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/951ab22e520b/ef4c03623_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/37d74e8a7cea/ef4c03623_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/86a8849a8093/ef4c03623_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/f426fbaa0856/ef4c03623_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/56be29ca446a/ef4c03623_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/bc69d3580e19/ef4c03623_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/709bf4485dd2/ef4c03623_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/edbca758c03b/ef4c03623_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/139b94bb2233/ef4c03623_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/11664508/79ec633931d8/ef4c03623_0022.jpg

相似文献

[1]
Insights into Carvone: Fatty Acid Hydrophobic NADES for Alkane Solubilization.

Energy Fuels. 2024-12-5

[2]
Carvone and its eutectic mixtures as novel, biodegradable, and tunable solvents to extract hydrophobic compounds in substitution for volatile toxic solvents.

Food Chem. 2022-4-16

[3]
Nanoscopic study on carvone-terpene based natural deep eutectic solvents.

J Chem Phys. 2021-12-14

[4]
Natural deep eutectic solvents as new potential media for green technology.

Anal Chim Acta. 2013-1-9

[5]
Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L.

Anal Chem. 2013-6-11

[6]
Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids.

Foods. 2022-8-31

[7]
NaDES as a green technological approach for the solubility improvement of BCS class II APIs: An insight into the molecular interactions.

Int J Pharm. 2023-3-5

[8]
Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications.

Sci Total Environ. 2023-7-10

[9]
The perspectives of natural deep eutectic solvents in agri-food sector.

Crit Rev Food Sci Nutr. 2019-8-13

[10]
Structural characterization and physicochemical properties of different hydrophilic natural deep eutectic solvents.

Anal Bioanal Chem. 2025-1

本文引用的文献

[1]
Toxicity test profile for deep eutectic solvents: A detailed review and future prospects.

Chemosphere. 2024-2

[2]
Progress in the application of ionic liquids and deep eutectic solvents for the separation and quantification of per- and polyfluoroalkyl substances.

J Hazard Mater. 2024-3-5

[3]
Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques.

ACS Omega. 2023-3-6

[4]
A review on natural based deep eutectic solvents (NADESs): fundamentals and potential applications in removing heavy metals from soil.

Environ Sci Pollut Res Int. 2023-11

[5]
Therapeutic deep eutectic solvents: A comprehensive review of their thermodynamics, microstructure and drug delivery applications.

Eur J Pharm Biopharm. 2023-5

[6]
Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents.

Molecules. 2022-2-17

[7]
Effect of Water on a Hydrophobic Deep Eutectic Solvent.

J Phys Chem B. 2022-1-20

[8]
Carvone and its eutectic mixtures as novel, biodegradable, and tunable solvents to extract hydrophobic compounds in substitution for volatile toxic solvents.

Food Chem. 2022-4-16

[9]
New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas.

Int J Mol Sci. 2021-9-2

[10]
Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil.

Phys Chem Chem Phys. 2021-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索