Suppr超能文献

用于血管内介入期间荧光透视图像虚拟增强的空腹血糖驱动模拟。

FBG-driven simulation for virtual augmentation of fluoroscopic images during endovascular interventions.

作者信息

Scarponi Valentina, Verde Juan, Haouchine Nazim, Duprez Michel, Nageotte Florent, Cotin Stéphane

机构信息

Mimesis Team Inria Strasbourg France.

ICube UMR 7357 University of Strasbourg Strasbourg France.

出版信息

Healthc Technol Lett. 2024 Dec 7;11(6):392-401. doi: 10.1049/htl2.12108. eCollection 2024 Dec.

Abstract

Endovascular interventions are procedures designed to diagnose and treat vascular diseases, using catheters to navigate inside arteries and veins. Thanks to their minimal invasiveness, they offer many benefits, such as reduced pain and hospital stays, but also present many challenges for clinicians, as they require specialized training and heavy use of X-rays. This is particularly relevant when accessing (i.e. cannulating) small arteries with steep angles, such as most aortic branches. To address this difficulty, a novel solution that enhances fluoroscopic 2D images in real-time by displaying virtual configurations of the catheter and guidewire is proposed. In contrast to existing works, proposing either simulators or simple augmented reality frameworks, this approach involves a predictive simulation showing the resulting shape of the catheter after guidewire withdrawal without requiring the clinician to perform this task. This system demonstrated accurate prediction with a mean 3D error of 2.4   1.3 mm and a mean error of 1.1   0.7 mm on the fluoroscopic image plane between the real catheter shape after guidewire withdrawal and the predicted shape. A user study reported an average intervention time reduction of 56 when adopting this system, resulting in a lower X-ray exposure.

摘要

血管内介入治疗是一种利用导管在动脉和静脉内操作来诊断和治疗血管疾病的程序。由于其微创性,它具有许多优点,如减轻疼痛和缩短住院时间,但也给临床医生带来了许多挑战,因为它们需要专门的培训并且大量使用X射线。在接入(即插管)角度陡峭的小动脉时,比如大多数主动脉分支,这一问题尤为突出。为了解决这一难题,本文提出了一种新颖的解决方案,通过显示导管和导丝的虚拟配置来实时增强荧光透视二维图像。与现有研究不同,现有研究要么提出模拟器,要么提出简单的增强现实框架,而这种方法涉及一种预测模拟,它能显示导丝拔出后导管的最终形状,而无需临床医生执行此操作。该系统显示出准确的预测结果,在导丝拔出后的真实导管形状与预测形状之间,荧光透视图像平面上的平均三维误差为2.4±1.3毫米,平均误差为1.1±0.7毫米。一项用户研究报告称,采用该系统时平均干预时间减少了56秒,从而降低了X射线暴露量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e2/11665791/dafb5b2f21c1/HTL2-11-392-g004.jpg

相似文献

1
FBG-driven simulation for virtual augmentation of fluoroscopic images during endovascular interventions.
Healthc Technol Lett. 2024 Dec 7;11(6):392-401. doi: 10.1049/htl2.12108. eCollection 2024 Dec.
2
Navigation and visualisation with HoloLens in endovascular aortic repair.
Innov Surg Sci. 2018 Oct 4;3(3):167-177. doi: 10.1515/iss-2018-2001. eCollection 2018 Sep.
3
Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
Comput Methods Programs Biomed. 2020 Aug;192:105420. doi: 10.1016/j.cmpb.2020.105420. Epub 2020 Feb 29.
4
Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.
Int J Comput Assist Radiol Surg. 2018 Feb;13(2):203-213. doi: 10.1007/s11548-017-1689-z. Epub 2017 Nov 23.
5
Value of C-Arm Cone Beam Computed Tomography Image Fusion in Maximizing the Versatility of Endovascular Robotics.
Ann Vasc Surg. 2016 Jan;30:138-48. doi: 10.1016/j.avsg.2015.06.070. Epub 2015 Aug 6.
6
Real-time respiratory motion compensated roadmaps for hepatic arterial interventions.
Med Phys. 2021 Oct;48(10):5661-5673. doi: 10.1002/mp.15187. Epub 2021 Sep 4.
8
Design and development of a personalized virtual reality-based training system for vascular intervention surgery.
Comput Methods Programs Biomed. 2024 Jun;249:108142. doi: 10.1016/j.cmpb.2024.108142. Epub 2024 Mar 21.
9
Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation.
J Vasc Surg. 2017 Feb;65(2):530-537. doi: 10.1016/j.jvs.2016.01.045. Epub 2016 Mar 16.
10
A novel catheter interaction simulating method for virtual reality interventional training systems.
Med Biol Eng Comput. 2023 Mar;61(3):685-697. doi: 10.1007/s11517-022-02730-w. Epub 2022 Dec 30.

引用本文的文献

1
Finite element analysis-assisted surgical planning and evaluation of flap design in hand surgery.
Front Bioeng Biotechnol. 2025 Jun 11;13:1611993. doi: 10.3389/fbioe.2025.1611993. eCollection 2025.

本文引用的文献

1
Learning-based autonomous vascular guidewire navigation without human demonstration in the venous system of a porcine liver.
Int J Comput Assist Radiol Surg. 2022 Nov;17(11):2033-2040. doi: 10.1007/s11548-022-02646-8. Epub 2022 May 23.
2
Economic Evaluation of Endovascular Treatment for Acute Ischemic Stroke.
Stroke. 2022 Mar;53(3):968-975. doi: 10.1161/STROKEAHA.121.034599. Epub 2021 Oct 14.
3
Navigation and visualisation with HoloLens in endovascular aortic repair.
Innov Surg Sci. 2018 Oct 4;3(3):167-177. doi: 10.1515/iss-2018-2001. eCollection 2018 Sep.
4
Contrast-induced nephropathy: Pathophysiology, risk factors, and prevention.
Saudi J Kidney Dis Transpl. 2018 Jan-Feb;29(1):1-9. doi: 10.4103/1319-2442.225199.
5
VCSim3: a VR simulator for cardiovascular interventions.
Int J Comput Assist Radiol Surg. 2018 Jan;13(1):135-149. doi: 10.1007/s11548-017-1679-1. Epub 2017 Oct 27.
7
Computer-Assisted Transcatheter Heart Valve Implantation in Valve-in-Valve Procedures.
Innovations (Phila). 2016 May-Jun;11(3):193-200. doi: 10.1097/IMI.0000000000000259.
8
ImaGiNe Seldinger: first simulator for Seldinger technique and angiography training.
Comput Methods Programs Biomed. 2013 Aug;111(2):419-34. doi: 10.1016/j.cmpb.2013.05.014. Epub 2013 Jun 17.
9
Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires.
Int J Med Robot. 2012 Sep;8(3):300-10. doi: 10.1002/rcs.1417. Epub 2012 Feb 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验