Wijekoon Anjana, Das Adrito, Herrera Roxana R, Khan Danyal Z, Hanrahan John, Carter Eleanor, Luoma Valpuri, Stoyanov Danail, Marcus Hani J, Bano Sophia
UCL Hawkes Institute University College London London UK.
Department of Computer Science University College London London UK.
Healthc Technol Lett. 2024 Nov 25;11(6):318-326. doi: 10.1049/htl2.12099. eCollection 2024 Dec.
Accurate intra-operative Remaining Surgery Duration (RSD) predictions allow for anaesthetists to more accurately decide when to administer anaesthetic agents and drugs, as well as to notify hospital staff to send in the next patient. Therefore, RSD plays an important role in improved patient care and minimising surgical theatre costs via efficient scheduling. In endoscopic pituitary surgery, it is uniquely challenging due to variable workflow sequences with a selection of optional steps contributing to high variability in surgery duration. This article presents PitRSDNet for predicting RSD during pituitary surgery, a spatio-temporal neural network model that learns from historical data focusing on workflow sequences. PitRSDNet integrates workflow knowledge into RSD prediction in two forms: (1) multi-task learning for concurrently predicting step and RSD; and (2) incorporating prior steps as context in temporal learning and inference. PitRSDNet is trained and evaluated on a new endoscopic pituitary surgery dataset with 88 videos to show competitive performance improvements over previous statistical and machine learning methods. The findings also highlight how PitRSDNet improves RSD precision on outlier cases utilising the knowledge of prior steps.
准确的术中剩余手术时长(RSD)预测能够让麻醉师更精准地决定何时给予麻醉剂和药物,以及通知医院工作人员接入下一位患者。因此,RSD在改善患者护理以及通过高效排班将手术室成本降至最低方面发挥着重要作用。在内镜垂体手术中,由于工作流程顺序多变,且有一系列可选步骤导致手术时长差异很大,所以进行RSD预测极具挑战性。本文介绍了用于预测垂体手术中RSD的PitRSDNet,这是一种时空神经网络模型,它从关注工作流程顺序的历史数据中学习。PitRSDNet以两种形式将工作流程知识整合到RSD预测中:(1)多任务学习,用于同时预测步骤和RSD;(2)在时间学习和推理中将先前步骤作为上下文纳入。PitRSDNet在一个包含88个视频的新内镜垂体手术数据集上进行训练和评估,结果表明它比之前的统计和机器学习方法有更具竞争力的性能提升。研究结果还凸显了PitRSDNet如何利用先前步骤的知识提高异常情况下RSD的预测精度。