Suppr超能文献

通过白质理解认知衰老:基于固定点的分析

Understanding Cognitive Aging Through White Matter: A Fixel-Based Analysis.

作者信息

Tinney Emma M, Warren Aaron E L, Ai Meishan, Morris Timothy P, O'Brien Amanda, Odom Hannah, Sutton Bradley P, Jain Shivangi, Kang Chaeryon, Huang Haiqing, Wan Lu, Oberlin Lauren, Burns Jeffrey M, Vidoni Eric D, McAuley Edward, Kramer Arthur F, Erickson Kirk I, Hillman Charles H

机构信息

Department of Psychology, Northeastern University, Boston, Massachusetts, USA.

Center for Cognitive & Brain Health, Northeastern University, Boston, Massachusetts, USA.

出版信息

Hum Brain Mapp. 2024 Dec 15;45(18):e70121. doi: 10.1002/hbm.70121.

Abstract

Diffusion-weighted imaging (DWI) has been frequently used to examine age-related deterioration of white matter microstructure and its relationship to cognitive decline. However, typical tensor-based analytical approaches are often difficult to interpret due to the challenge of decomposing and (mis)interpreting the impact of crossing fibers within a voxel. We hypothesized that a novel analytical approach capable of resolving fiber-specific changes within each voxel (i.e., fixel-based analysis [FBA])-would show greater sensitivity relative to the traditional tensor-based approach for assessing relationships between white matter microstructure, age, and cognitive performance. To test our hypothesis, we studied 636 cognitively normal adults aged 65-80 years (mean age = 69.8 years; 71% female) using diffusion-weighted MRI. We analyzed fixels (i.e., fiber-bundle elements) to test our hypotheses. A fixel provides insight into the structural integrity of individual fiber populations in each voxel in the presence of multiple crossing fiber pathways, allowing for potentially increased specificity over other diffusion measures. Linear regression was used to investigate associations between each of three fixel metrics (fiber density, cross-section, and density × cross-section) with age and cognitive performance. We then compared and contrasted the FBA results to a traditional tensor-based approach examining voxel-wise fractional anisotropy. In a whole-brain analysis, significant associations were found between fixel-based metrics and age after adjustments for sex, education, total brain volume, site, and race. We found that increasing age was associated with decreased fiber density and cross-section, namely in the fornix, striatal, and thalamic pathways. Further analysis revealed that lower fiber density and cross-section were associated with poorer performance in measuring processing speed and attentional control. In contrast, the tensor-based analysis failed to detect any white matter tracts significantly associated with age or cognition. Taken together, these results suggest that FBAs of DWI data may be more sensitive for detecting age-related white matter changes in an older adult population and can uncover potentially clinically important associations with cognitive performance.

摘要

扩散加权成像(DWI)已被频繁用于研究与年龄相关的白质微观结构退化及其与认知衰退的关系。然而,由于在体素内分解和(错误)解释交叉纤维的影响存在挑战,典型的基于张量的分析方法往往难以解释。我们假设,一种能够解析每个体素内纤维特异性变化的新型分析方法(即基于固定体素的分析 [FBA])——相对于传统的基于张量的方法,在评估白质微观结构、年龄和认知表现之间的关系时将表现出更高的敏感性。为了验证我们的假设,我们使用扩散加权磁共振成像研究了636名65至80岁的认知正常成年人(平均年龄 = 69.8岁;71%为女性)。我们分析了固定体素(即纤维束单元)以验证我们的假设。在存在多条交叉纤维路径的情况下,固定体素能够洞察每个体素中单个纤维群体的结构完整性,与其他扩散测量相比,可能具有更高的特异性。线性回归用于研究三个固定体素指标(纤维密度、横截面积和密度×横截面积)与年龄和认知表现之间的关联。然后,我们将FBA结果与基于传统张量的体素级分数各向异性分析方法进行了比较和对比。在全脑分析中,在对性别、教育程度、全脑体积、研究地点和种族进行调整后,发现基于固定体素的指标与年龄之间存在显著关联。我们发现,年龄增长与纤维密度和横截面积降低有关,特别是在穹窿、纹状体和丘脑通路中。进一步分析表明,较低的纤维密度和横截面积与测量处理速度和注意力控制方面的较差表现有关。相比之下,基于张量的分析未能检测到任何与年龄或认知显著相关的白质束。综上所述,这些结果表明,对DWI数据进行FBA可能对检测老年人群中与年龄相关的白质变化更敏感,并且可以揭示与认知表现潜在的临床重要关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f167/11669003/e14fff334761/HBM-45-e70121-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验